<正>SnO_2 thin film sensors were fabricated by a thermal evaporation method.The sensors were heated for thermal oxidation.For high porosity,SnO_2 thin film sensors were treated in a N_2 atmosphere.The sensors th...<正>SnO_2 thin film sensors were fabricated by a thermal evaporation method.The sensors were heated for thermal oxidation.For high porosity,SnO_2 thin film sensors were treated in a N_2 atmosphere.The sensors that were treated with O_2 after being treated with N_2 showed 70 % sensitivity for 1×10~ -6) of H_2S,which is higher than the sensors that were only treated with O_2.The Ni metal,as a catalyst,was evaporated on the thin film Sn on the Al_2O_3 substrate.The sensor was heated to grow the Sn nanowire in a tube furnace with N_2 flow.Sn nanowire was heated for oxidation.The sensitivity of SnO_2 nanowire sensor was measured for 500×10~ -9) of H_2S.The selectivity of the SnO_2 nanowire sensor was compared with the thin film and the thick film SnO_2.Each sensor was measured for H_2S,CO,and NH_3 in this study.展开更多
Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation ...Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.展开更多
文摘<正>SnO_2 thin film sensors were fabricated by a thermal evaporation method.The sensors were heated for thermal oxidation.For high porosity,SnO_2 thin film sensors were treated in a N_2 atmosphere.The sensors that were treated with O_2 after being treated with N_2 showed 70 % sensitivity for 1×10~ -6) of H_2S,which is higher than the sensors that were only treated with O_2.The Ni metal,as a catalyst,was evaporated on the thin film Sn on the Al_2O_3 substrate.The sensor was heated to grow the Sn nanowire in a tube furnace with N_2 flow.Sn nanowire was heated for oxidation.The sensitivity of SnO_2 nanowire sensor was measured for 500×10~ -9) of H_2S.The selectivity of the SnO_2 nanowire sensor was compared with the thin film and the thick film SnO_2.Each sensor was measured for H_2S,CO,and NH_3 in this study.
基金Supported by the state Key Development Program for Basic Research of China (2003CB615707) and the National Natural Science Foundation of China (20736005).
文摘Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.