The rapid growth in global electric vehicles(EVs)sales has promoted the development of Co-free,Ni-rich layered cathodes for state-of-the-art high energy-density,inexpensive lithium-ion batteries(LIBs).However,progress...The rapid growth in global electric vehicles(EVs)sales has promoted the development of Co-free,Ni-rich layered cathodes for state-of-the-art high energy-density,inexpensive lithium-ion batteries(LIBs).However,progress in their commercial use has been seriously hampered by exasperating performance deterioration and safety concerns.Herein,a robust single-crystalline,Co-free,Ni-rich LiNi_(0.95)Mn_(0.05)O_(2)(SC-NM95)cathode is successfully designed using a molten salt-assisted method,and it exhibits better structural stability and cycling durability than those of polycrystalline LiNi_(0.95)Mn_(0.05)O_(2) (PC-NM95).Notably,the SC-NM95 cathode achieves a high discharge capacity of 218.2 mAh g^(-1),together with a high energy density of 837.3 Wh kg^(-1) at 0.1 C,mainly due to abundant Ni^(2+)/Ni^(3+) redox.It also presents an outstanding capacity retention(84.4%)after 200 cycles at 1 C,because its integrated single-crystalline structure effectively inhibits particle microcracking and surface phase transformation.In contrast,the PC-NM95 cathode suffers from rapid capacity fading owing to the nucleation and propagation of intergranular microcracking during cycling,facilitating aggravated parasitic reactions and rocksalt phase accumulation.This work provides a fundamental strategy for designing high-performance singlecrystalline,Co-free,Ni-rich cathode materials and also represents an important breakthrough in developing high-safe,low-cost,and high-energy LIBs.展开更多
基金This work was financially supported by National Key Research and Development Program of China(2019YFC1907805)Fundamental Research Funds for the Central Universities of Central South University(2021zzts0072).
文摘The rapid growth in global electric vehicles(EVs)sales has promoted the development of Co-free,Ni-rich layered cathodes for state-of-the-art high energy-density,inexpensive lithium-ion batteries(LIBs).However,progress in their commercial use has been seriously hampered by exasperating performance deterioration and safety concerns.Herein,a robust single-crystalline,Co-free,Ni-rich LiNi_(0.95)Mn_(0.05)O_(2)(SC-NM95)cathode is successfully designed using a molten salt-assisted method,and it exhibits better structural stability and cycling durability than those of polycrystalline LiNi_(0.95)Mn_(0.05)O_(2) (PC-NM95).Notably,the SC-NM95 cathode achieves a high discharge capacity of 218.2 mAh g^(-1),together with a high energy density of 837.3 Wh kg^(-1) at 0.1 C,mainly due to abundant Ni^(2+)/Ni^(3+) redox.It also presents an outstanding capacity retention(84.4%)after 200 cycles at 1 C,because its integrated single-crystalline structure effectively inhibits particle microcracking and surface phase transformation.In contrast,the PC-NM95 cathode suffers from rapid capacity fading owing to the nucleation and propagation of intergranular microcracking during cycling,facilitating aggravated parasitic reactions and rocksalt phase accumulation.This work provides a fundamental strategy for designing high-performance singlecrystalline,Co-free,Ni-rich cathode materials and also represents an important breakthrough in developing high-safe,low-cost,and high-energy LIBs.