The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road ...The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.展开更多
H3PW12O40/TiO2 nanometer photocatalyst was prepared by one step hydrothermal synthesis from H3PW12O40·nH20 and Ti(OBu)4, simultaneously realizing the load and modification of H3PW12O40. The catalyst was charact...H3PW12O40/TiO2 nanometer photocatalyst was prepared by one step hydrothermal synthesis from H3PW12O40·nH20 and Ti(OBu)4, simultaneously realizing the load and modification of H3PW12O40. The catalyst was characterized by Fourier transform infrared spectroscopy(FTIR), powder X-ray diffraction(XRD), nitrogen adsorp- tion-desorption analysis and scanning electron microscopy(SEM). The results show that the catalyst is Keggin struc- ture and crystallized in anatase structure, the diameter and specific area of the prepared catalyst are 3.8 nm and 177.9 m^2/g, respectively, and its dispersity is better. The photocatalytic properties were compared for TiO2H3PW12O40/TiO2 prepared by impregnation and H3PW12O40/TiO2 prepared by hydrothermal method with methyl orange as a probe. The effects of H3PW12O40 loadings, crystallization method, initial pH and concentration of dye solution on the degradation of methyl orange were investigated.展开更多
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
Based on two recent results, several new criteria of H2 performance for continuous-time linear systems are established by introducing two slack matrices. When used in robust analysis of systems with polytopic uncertai...Based on two recent results, several new criteria of H2 performance for continuous-time linear systems are established by introducing two slack matrices. When used in robust analysis of systems with polytopic uncertainties, they can reduce conservatism inherent in the earlier quadratic method and the established parameter-dependent Lyapunov function approach. Two numerical examples are included to illustrate the feasibility and advantage of the proposed representations.展开更多
Bleached softwood kraft pulp (BSKP) fibers were pretreated in a 5 mol/L NaOH aqueous solution at 35℃ for 90 min. The ZnCl2/H2O/ C2H5OH was used to treat the pretreated BSKP fibers, filter papers were then prepared. I...Bleached softwood kraft pulp (BSKP) fibers were pretreated in a 5 mol/L NaOH aqueous solution at 35℃ for 90 min. The ZnCl2/H2O/ C2H5OH was used to treat the pretreated BSKP fibers, filter papers were then prepared. In the course of processing, the effects of various molar ratios of ZnCl2/H2O/C2H5OH on the filter paper performance were evaluated. SEMEDX was conducted to analyze the physical configuration of the filter papers. Moreover, FT-IR and XPS were performed to further characterize the BSKP, the pretreated BSKP and the filter paper fibers. The results indicated that the fibers treated by ZnCl2/H2O/C2H5OH were swollen and exhibited slight fibrillation, leading to a looser fiber structure and therefore, enhanced filter paper performance. Air permeability increased from 161.7 L/(m2·s) to 1450.4 L/(m2·s) for the filter papers when the molar ratio of ZnCl2/H2O/C2H5OH was 1:14:1. The optimum molar ratio of ZnCl2/H2O/C2H5OH was found to be 1:14:1, and no significant effect of ZnCl2/H2O/C2H5OH on fibers’ functional groups was detected. These results showed that filtration performance of filter papers was improved when treated with the ZnCl2/H2O/C2H5OH solution.展开更多
We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the...We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the practicality from the experimental results. The reactor module employed was an aluminum plate-tube heat exchanger with corrugated fins, and the CaCl<sub>2</sub> powder was in the form of a packed bed. Heat storage operation and heat dissipation operation are performed at the same time and supplied to the heat demand destination. At this time, an environmental heat source can be used during the heat radiation operation, and the heat output can release more heat than the heat input during heat storage. The heat discharging and charging characteristics of the reactor module were evaluated experimentally. The coefficient of performance (COP) was calculated for the heat upgrading cycle, and the heat output in the system was determined. A COP of 1.42 and output of 650 W/L, based on the heat exchanger volume, were obtained using a 600 s change time for the heat pump.展开更多
Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this cata...Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm2 and H2 evolution rate of 240 μmol·cm-2·h-1 at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.展开更多
A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based...A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based on this criterion, some sufficient conditions on two classes of robust H2 problems for uncertain sampled-data control systems axe presented through a set of coupled linear matrix inequalities. Finally, the less conservatism and potential of the developed results are illustrated via a numerical example.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51005115, No. 51005248)Science Fund of State Key Laboratory of Automotive Safety and Energy of China (Grant No. KF11201)
文摘The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.
基金Supported by the Fund of Institution of Chemical Materials,China Academy of Engineering Physics
文摘H3PW12O40/TiO2 nanometer photocatalyst was prepared by one step hydrothermal synthesis from H3PW12O40·nH20 and Ti(OBu)4, simultaneously realizing the load and modification of H3PW12O40. The catalyst was characterized by Fourier transform infrared spectroscopy(FTIR), powder X-ray diffraction(XRD), nitrogen adsorp- tion-desorption analysis and scanning electron microscopy(SEM). The results show that the catalyst is Keggin struc- ture and crystallized in anatase structure, the diameter and specific area of the prepared catalyst are 3.8 nm and 177.9 m^2/g, respectively, and its dispersity is better. The photocatalytic properties were compared for TiO2H3PW12O40/TiO2 prepared by impregnation and H3PW12O40/TiO2 prepared by hydrothermal method with methyl orange as a probe. The effects of H3PW12O40 loadings, crystallization method, initial pH and concentration of dye solution on the degradation of methyl orange were investigated.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
基金This work was supported by the Chinese National Natural Science Foundation (No. 60374024) and Program for Changjiang Scholars and Innovative Research Team in University.
文摘Based on two recent results, several new criteria of H2 performance for continuous-time linear systems are established by introducing two slack matrices. When used in robust analysis of systems with polytopic uncertainties, they can reduce conservatism inherent in the earlier quadratic method and the established parameter-dependent Lyapunov function approach. Two numerical examples are included to illustrate the feasibility and advantage of the proposed representations.
基金the support of the Natural Science Foundation of Heilongjiang Province (Grant No. C2018007)
文摘Bleached softwood kraft pulp (BSKP) fibers were pretreated in a 5 mol/L NaOH aqueous solution at 35℃ for 90 min. The ZnCl2/H2O/ C2H5OH was used to treat the pretreated BSKP fibers, filter papers were then prepared. In the course of processing, the effects of various molar ratios of ZnCl2/H2O/C2H5OH on the filter paper performance were evaluated. SEMEDX was conducted to analyze the physical configuration of the filter papers. Moreover, FT-IR and XPS were performed to further characterize the BSKP, the pretreated BSKP and the filter paper fibers. The results indicated that the fibers treated by ZnCl2/H2O/C2H5OH were swollen and exhibited slight fibrillation, leading to a looser fiber structure and therefore, enhanced filter paper performance. Air permeability increased from 161.7 L/(m2·s) to 1450.4 L/(m2·s) for the filter papers when the molar ratio of ZnCl2/H2O/C2H5OH was 1:14:1. The optimum molar ratio of ZnCl2/H2O/C2H5OH was found to be 1:14:1, and no significant effect of ZnCl2/H2O/C2H5OH on fibers’ functional groups was detected. These results showed that filtration performance of filter papers was improved when treated with the ZnCl2/H2O/C2H5OH solution.
文摘We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the practicality from the experimental results. The reactor module employed was an aluminum plate-tube heat exchanger with corrugated fins, and the CaCl<sub>2</sub> powder was in the form of a packed bed. Heat storage operation and heat dissipation operation are performed at the same time and supplied to the heat demand destination. At this time, an environmental heat source can be used during the heat radiation operation, and the heat output can release more heat than the heat input during heat storage. The heat discharging and charging characteristics of the reactor module were evaluated experimentally. The coefficient of performance (COP) was calculated for the heat upgrading cycle, and the heat output in the system was determined. A COP of 1.42 and output of 650 W/L, based on the heat exchanger volume, were obtained using a 600 s change time for the heat pump.
基金supported by the National Natural Science Foundation of China(No.U1632273,No.21673214,No.U1732272,and No.U1832165)
文摘Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm2 and H2 evolution rate of 240 μmol·cm-2·h-1 at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.
文摘A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based on this criterion, some sufficient conditions on two classes of robust H2 problems for uncertain sampled-data control systems axe presented through a set of coupled linear matrix inequalities. Finally, the less conservatism and potential of the developed results are illustrated via a numerical example.