The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was establishe...The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.展开更多
Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is chall...Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.展开更多
Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation ...Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms.We present an overview of epigenetic mechanisms including chromatin structure and histone modifications;and discuss novel roles of two histone modifiers,Ezh2 and Suv4-20h1/Suv4-20h2(collectively referred to as Suv4-20h),in neurodevelopment and neurogenesis.This review will focus on broadly reviewing epigenetic regulatory components,the roles of epigenetic components during neurogenesis,and potential applications in regenerative medicine.展开更多
SiC-MgAl_(2)O_(4) composites with SiAlON polytypoids(12H and 21R)as the bonding phases were prepared using SiC fine powder,MgAl_(2)O_(4)fine powder and Al powder as raw materials.The effects of the firing temperature ...SiC-MgAl_(2)O_(4) composites with SiAlON polytypoids(12H and 21R)as the bonding phases were prepared using SiC fine powder,MgAl_(2)O_(4)fine powder and Al powder as raw materials.The effects of the firing temperature and the mass ratio of SiC to MgAl_(2)O_(4) on the formation of SiAlON polytypoids as well as on the properties of samples were studied.The formation mechanism of SiAlON polytypoids was discussed.The results show that firing at 1650℃in the nitrogen atmosphere,SiC-MgAl_(2)O_(4) composites with SiAlON polytypoids can be obtained.With the gradual increase of the mass ratio of SiC to MgAl_(2)O_(4) in the raw materials,12H forms first,and then coexists with 21H,finally,all 12H converts into 21R in samples.Both phases are plate crystals with flat and smooth edges.Compared with 21R,12H is conducive to improving the density and the cold mechanical properties of materials.After firing at 1650℃in the nitrogen atmosphere,with the mass ratio of SiC to MgAl_(2)O_(4) of 6:4,the sample has the cold modulus of rupture of 27 MPa,showing the optimal performance.展开更多
文摘The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.
文摘Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.
文摘Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms.We present an overview of epigenetic mechanisms including chromatin structure and histone modifications;and discuss novel roles of two histone modifiers,Ezh2 and Suv4-20h1/Suv4-20h2(collectively referred to as Suv4-20h),in neurodevelopment and neurogenesis.This review will focus on broadly reviewing epigenetic regulatory components,the roles of epigenetic components during neurogenesis,and potential applications in regenerative medicine.
文摘SiC-MgAl_(2)O_(4) composites with SiAlON polytypoids(12H and 21R)as the bonding phases were prepared using SiC fine powder,MgAl_(2)O_(4)fine powder and Al powder as raw materials.The effects of the firing temperature and the mass ratio of SiC to MgAl_(2)O_(4) on the formation of SiAlON polytypoids as well as on the properties of samples were studied.The formation mechanism of SiAlON polytypoids was discussed.The results show that firing at 1650℃in the nitrogen atmosphere,SiC-MgAl_(2)O_(4) composites with SiAlON polytypoids can be obtained.With the gradual increase of the mass ratio of SiC to MgAl_(2)O_(4) in the raw materials,12H forms first,and then coexists with 21H,finally,all 12H converts into 21R in samples.Both phases are plate crystals with flat and smooth edges.Compared with 21R,12H is conducive to improving the density and the cold mechanical properties of materials.After firing at 1650℃in the nitrogen atmosphere,with the mass ratio of SiC to MgAl_(2)O_(4) of 6:4,the sample has the cold modulus of rupture of 27 MPa,showing the optimal performance.