为提升瓦斯抽采利用率、促进煤矿安全生产,采用介质阻挡放电(DBD)试验系统对CH4-O2-N2-H2O反应体系进行低温等离子体转化研究,分析水蒸气与CH4物质的量比、O2/N2物质的量比、放电电压、放电频率,以及气体总流量对CH4转化率及主要产物产...为提升瓦斯抽采利用率、促进煤矿安全生产,采用介质阻挡放电(DBD)试验系统对CH4-O2-N2-H2O反应体系进行低温等离子体转化研究,分析水蒸气与CH4物质的量比、O2/N2物质的量比、放电电压、放电频率,以及气体总流量对CH4转化率及主要产物产率的影响。结果表明:CH4-O2-N2-H2O反应体系DBD的主要产物为H2、CO、CO2、C2H2、C2H4、C2H6和CH3OH;反应参数对CH4转化率和H2、CO、CO2、C2H6、CH3OH产率影响较为显著,而对C2H2、C2H4产率影响不显著;CH4转化率及主要产物产率均在放电频率为9.8 k Hz时取得最大值。展开更多
We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to f...We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.展开更多
Reaction resonance or Feshbach resonance in polyatomic reaction is one of the most fascinating phenomena in chemical reaction dynamics. The HO+CH4→HO+CH3 reaction is one of the pivotal polyato-mic reactions concerned...Reaction resonance or Feshbach resonance in polyatomic reaction is one of the most fascinating phenomena in chemical reaction dynamics. The HO+CH4→HO+CH3 reaction is one of the pivotal polyato-mic reactions concerned with both the experimental and theoretical scientists. Reaction probabilities and other dynamic properties of this system were calculated with quantum scattering theory method, but a simple QH(v)+HO(j)→Q+H2O(m,n) reaction model was used, in which only three degrees of freedom and the rotating of OH were considered while making CH3 as a pseudo atom. In this paper, by an ab initio method, partial potential energy surface(PPES) was constructed and all the 15 internal degrees-freedom were given. Feshbach resonance mechanism of this reaction can be obtained by the dynamic Eyring Lake on the PPES and the lifetime of the reactive resonance-state can be estimated using the gap of the vibrational energy levels of transient collision complex in the critical transition-state region. Above interesting dynamic properties would not be given by simple pseudo atomic reaction model.展开更多
文摘为提升瓦斯抽采利用率、促进煤矿安全生产,采用介质阻挡放电(DBD)试验系统对CH4-O2-N2-H2O反应体系进行低温等离子体转化研究,分析水蒸气与CH4物质的量比、O2/N2物质的量比、放电电压、放电频率,以及气体总流量对CH4转化率及主要产物产率的影响。结果表明:CH4-O2-N2-H2O反应体系DBD的主要产物为H2、CO、CO2、C2H2、C2H4、C2H6和CH3OH;反应参数对CH4转化率和H2、CO、CO2、C2H6、CH3OH产率影响较为显著,而对C2H2、C2H4产率影响不显著;CH4转化率及主要产物产率均在放电频率为9.8 k Hz时取得最大值。
基金the financial support of TUB-ITAK via Project 107E163.
文摘We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.
文摘Reaction resonance or Feshbach resonance in polyatomic reaction is one of the most fascinating phenomena in chemical reaction dynamics. The HO+CH4→HO+CH3 reaction is one of the pivotal polyato-mic reactions concerned with both the experimental and theoretical scientists. Reaction probabilities and other dynamic properties of this system were calculated with quantum scattering theory method, but a simple QH(v)+HO(j)→Q+H2O(m,n) reaction model was used, in which only three degrees of freedom and the rotating of OH were considered while making CH3 as a pseudo atom. In this paper, by an ab initio method, partial potential energy surface(PPES) was constructed and all the 15 internal degrees-freedom were given. Feshbach resonance mechanism of this reaction can be obtained by the dynamic Eyring Lake on the PPES and the lifetime of the reactive resonance-state can be estimated using the gap of the vibrational energy levels of transient collision complex in the critical transition-state region. Above interesting dynamic properties would not be given by simple pseudo atomic reaction model.