期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study of a mass transfer-reaction model for SO_2 absorption process using LAS/H_2SO_4 solution
1
作者 Yue Changtao Li Shuyuan +3 位作者 Chen Weihong Guo Shaohui Yang Yuhua Sha Yingxun 《Petroleum Science》 SCIE CAS CSCD 2010年第3期397-402,共6页
A regenerative absorption process for removal of SOx from FCC off-gas using LAS/ H2SO4 solution as absorbant was studied and pilot-plant experiments were carried out. A mass transfer- reaction model for the SO2 absorp... A regenerative absorption process for removal of SOx from FCC off-gas using LAS/ H2SO4 solution as absorbant was studied and pilot-plant experiments were carried out. A mass transfer- reaction model for the SO2 absorption process was established based on pilot-plant experiments, and the concentration distribution of components in the liquid film, and the partial pressure and mass transfer rate of SO2 along the height of the absorption tower, was calculated from this model. The numerical simulation results were compared with the experimental results and proved that the model can be used for describing the SO2 absorption process. 展开更多
关键词 Regenerative absorption process SOx cleanup LAS/h2so4 solution mass transfer-reactionmodel
下载PDF
Interaction of Mechanical and Electrochemical Factors duringCorrosion Fatigue of Fe-26Cr-1Mo Stainless Steel in 1M H_2SO_4 Solution
2
作者 Jianqiu WANG Jin LI Ziyong ZHU and Wei KE (Corrosion Science Laboratory, Institute of Corrosion and Protection of Metals Chinese Academy of Sciences, Shenyang, 110015, China)Qishan ZANG and Zhongguang WANG (State Key Laboratory for Fatigue and Fracture 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期181-186,共6页
The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic ... The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic strain amplitude and plastic strain rate on the dissolution current response was analysed. The experimental results showed that the transient current was dependent on the competitive process of the surface film rupture and repassivation of the new surface. The high plastic strain amplitude and the high plastic strain rate caused a change of electrochemical activity of specimen surface. In the condition of low strain amplitude and strain rate, the characteristics of current response was mainly relative tp the process of new surface repassivation.The competition kinetics has been analysed through the comparison of plastic strain rate and repassivating rate 展开更多
关键词 Mo Cr Interaction of Mechanical and Electrochemical Factors duringCorrosion Fatigue of Fe-26Cr-1Mo Stainless Steel in 1M h2so4 solution Fe SO
下载PDF
Enhanced photocatalytic activity of nanotube-like titania by sulfuric acid treatment 被引量:1
3
作者 YANGShao-gui QUANXie LIXin-yong FANGNing ZHANGNing ZHAOHui-min 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期290-293,共4页
The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-... The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO 2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV-VIS dispersive energy spectrophotometry(DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO 2 nanotubes treated with 1.0 mol/L H 2SO 4 solution (TiO 2(1.0M H 2SO 4) nanotubes)>TiO 2 nanotubes treated with 0.2 mol/L H 2SO 4 solution (TiO 2(0.2M H 2SO 4) nanotubes)>TiO 2 nanotubes >TiO 2 powder. This was attributed to the fact that TiO 2 nanotubes treated with H 2SO 4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO 2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO 2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO 2 nanotubes, this increase in activity was correlated with the concentration of H 2SO 4 solution. 展开更多
关键词 titania nanotube photocatalytic activity acid orange II H 2SO 4 solutions
下载PDF
regeneration of thermally deactivated commercial V-W-Ti catalysts 被引量:3
4
作者 Xuesong SHANG Jianrong LI +2 位作者 Xiaowei YU Jinsheng CHEN Chi HE 《Frontiers of Chemical Science and Engineering》 CAS CSCD 2012年第1期38-46,共9页
An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH4C1 (l mol/L) and dilute H2SO4 (0.5 tool/L), were ... An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH4C1 (l mol/L) and dilute H2SO4 (0.5 tool/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N2 adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH4C1 had a higher activity than that of the catalyst treated by dilute H2SO4. The main reason is that the NH3 generated from the decomposition of NH4C1 at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V205 were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O2 is a factorthat suppresses the catalytic activity. 展开更多
关键词 V2O5-WO3/TiO2 catalysts thermal deactiva-tion REGENERATION NH4C1 dilute h2so4 solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部