Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ra...Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 ℃ for 20 min. The HA la lyaeyre wr wasa ssu cbosaetqeude bnytl ya dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 ℃. The crystallinity increases obviously at 760 ℃. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic展开更多
Coating the hydroxyapatite (HA) on the titanium alloy surface can obtain a bioactive implant with high mechanical properties However, the bonding force between the titanium alloy and the HA was low due to their diff...Coating the hydroxyapatite (HA) on the titanium alloy surface can obtain a bioactive implant with high mechanical properties However, the bonding force between the titanium alloy and the HA was low due to their different coefficient of thermal expansion (CET). Preparing the multi-layer coating with alleviated thermal stress on titanium alloy substrate is few reported. Fabrication of a TiO2-bioactive glass (BG)-HA bioactive coating was proposed to solve this problem. A particular TiO2 surface was prepared on the titanium alloy substrate by micro-arc oxidation treatment. The BG and HA coating were coated onto the TiO2 surface in turn by using a sol-gel method. The microstructure, surface morphology and phase composition of the coatings were analyzed. The bonding force of coatings was investigated by the nick apparatus. In vitro dissolution was performed by soaking the TiO2-BG-HA coated samples into the simulated body fluid for various periods. Micro-structural observations indicated that no delamination and crack occurred at the interface of HA/BG and BG/TiO2. The bonding between the substrate and coating consists of the mechanical interaction and the chemical bonding. The bonding force could reach about 45 N. The TiO2-BG-HA coating displayed the excellent forming ability of bone-like apatite when it was soaked into the simulated body fluid. This work suggests an innovative way to reduce the internal stress among coatings through varying BG composition to adjust its CTE, so as to enhance the bonding force.展开更多
文摘Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 ℃ for 20 min. The HA la lyaeyre wr wasa ssu cbosaetqeude bnytl ya dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 ℃. The crystallinity increases obviously at 760 ℃. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic
基金supported by National Natural Science Foundation of China (Grant No.50872110)
文摘Coating the hydroxyapatite (HA) on the titanium alloy surface can obtain a bioactive implant with high mechanical properties However, the bonding force between the titanium alloy and the HA was low due to their different coefficient of thermal expansion (CET). Preparing the multi-layer coating with alleviated thermal stress on titanium alloy substrate is few reported. Fabrication of a TiO2-bioactive glass (BG)-HA bioactive coating was proposed to solve this problem. A particular TiO2 surface was prepared on the titanium alloy substrate by micro-arc oxidation treatment. The BG and HA coating were coated onto the TiO2 surface in turn by using a sol-gel method. The microstructure, surface morphology and phase composition of the coatings were analyzed. The bonding force of coatings was investigated by the nick apparatus. In vitro dissolution was performed by soaking the TiO2-BG-HA coated samples into the simulated body fluid for various periods. Micro-structural observations indicated that no delamination and crack occurred at the interface of HA/BG and BG/TiO2. The bonding between the substrate and coating consists of the mechanical interaction and the chemical bonding. The bonding force could reach about 45 N. The TiO2-BG-HA coating displayed the excellent forming ability of bone-like apatite when it was soaked into the simulated body fluid. This work suggests an innovative way to reduce the internal stress among coatings through varying BG composition to adjust its CTE, so as to enhance the bonding force.