The silicon micro-strip detector was fabricated by MEMS (Micro Electro Mechanical Systems) techniques[1].According to the application requirement and the process parameters, a large amount of B+ ions at 40 keV and1.5...The silicon micro-strip detector was fabricated by MEMS (Micro Electro Mechanical Systems) techniques[1].According to the application requirement and the process parameters, a large amount of B+ ions at 40 keV and1.51014 ions/cm2 have been implanted into the wafers. It is found that more than 50% of the micro strips cannotform a functional P-N junction. Based on the suggestion of simulation results, the process of stratified implantationwas then applied with the following procedures. B+ ions were firstly implanted into the wafer at 40 keV, 21014ions/cm2, and then sequentially implanted at 20 keV, 21014 ions/cm2 into the same wafers. Preliminary testresults show that over 95% of the silicon micro-strips in this batch have a perfect P-N junction with a reverse bodyresistance larger than 500 MΩcm. The energy resolution for 5.156 MeV particles of 239Pu source is about 0.8%or even less, as shown in Fig. 1. The structure of the detectors is therefore definitely different from the designeddevices (Fig. 2(a)) shown in Fig. 1, which is more like a P-P+-N structure as shown in Fig. 2(b).展开更多
Purpose: To analyze the application of percutaneous transluminal angioplasty and stenting in acute deep venous thrombosis of lower extremities. Methods: 70 patients were divided into two groups according to the presen...Purpose: To analyze the application of percutaneous transluminal angioplasty and stenting in acute deep venous thrombosis of lower extremities. Methods: 70 patients were divided into two groups according to the presence or absence of percutaneous transluminal angioplasty and stenting. Results: The mean circumferential diameter difference between the affected limbs and the healthy limbs and the knees at 15 cm was statistically significant. The cure rate and effective rate of the research group were higher than those of the control group (P<0.05). Conclusion: Percutaneous transluminal angioplasty and stenting are of high value in acute lower extremity deep venous thrombosis.展开更多
In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases....In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases.Secondary surgical operation(s)usually become inevitable to prevent long term exposure of body with the toxic implant contents.The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals,alloys,and metallic glasses.As such,the nature of metallic biomaterials are transformed from the bioinert to bioactive and multi-biofunctional(anti-bacterial,anti-proliferation,anti-cancer,etc.).Magnesium-based biomaterials are candidates to be used as new generation biodegradable metals.Magnesium(Mg)can dissolve in body fluid that means the implanted Mg can degrade during healing process,and if the degradation is controlled it would leave no debris after the completion of healing.Hence,the need for secondary surgical operation(s)for the implant removal could be eliminated.Besides its biocompatibility,the inherent mechanical properties of Mg are very similar to those of human bone.Researchers have been working on synthesis and characterization of Mg-based biomaterials with a variety of composition in order to control the degradation rate of Mg since uncontrolled degradation could result in loss of mechanical integrity,metal contamination in the body and intolerable hydrogen evolution by tissue.It was observed that the applied methods of synthesis and the choice of components affect the characteristics and performance of the Mg-based biomaterials.Researchers have synthesized many Mg-based materials through several synthesis routes and investigated their mechanical properties,biocompatibility and degradation behavior through in vitro,in vivo and in silico studies.This paper is a comprehensive review that compiles,analyses and critically discusses the recent literature on the important aspects of Mg-based biomaterials.展开更多
Organic polymer coatings have been commonly used in biomedical field,which play an important role in achieving biological antifouling,drug delivery,and bacteriostasis.With the continuous development of polymer science...Organic polymer coatings have been commonly used in biomedical field,which play an important role in achieving biological antifouling,drug delivery,and bacteriostasis.With the continuous development of polymer science,organic polymer coatings can be designed with complex and advanced functions,which is conducive to the construction of biomedical materials with different performances.According to different physical and chemical properties of materials,biomedical organic polymer coating materials are classified into zwitterionic polymers,non-ionic polymers,and biomacromolecules.The strategies of combining coatings with substrates include physical adsorption,chemical grafting,and self-adhesion.Though the coating materials and construction methods are different,many biomedical polymer coatings have been developed to achieve excellent performances,i.e.,enhanced lubrication,anti-inflammation,antifouling,antibacterial,drug release,anti-encrustation,anti-thrombosis,etc.Consequently,a large number of biomedical polymer coatings have been used in artificial lungs,ureteral stent,vascular flow diverter,and artificial joints.In this review,we summarize different types,properties,construction methods,biological functions,and clinical applications of biomedical organic polymer coatings,and prospect future direction for development of organic polymer coatings in biomedical field.It is anticipated that this review can be useful for the design and synthesis of functional organic polymer coatings with various biomedical purposes.展开更多
In the past few decades,additive manufacturing(AM)has been developed and applied as a cost-effective and versatile technique for the fabrication of geometrically complex objects in the medical industry.In this review,...In the past few decades,additive manufacturing(AM)has been developed and applied as a cost-effective and versatile technique for the fabrication of geometrically complex objects in the medical industry.In this review,we discuss current advances of AM in medical applications for the generation of pharmaceuticals,medical implants,and medical devices.Oral and transdermal drugs can be fabricated by a variety of AM technologies.Different types of hard and soft clinical implants have also been realized by AM,with the goal of producing tissue-engineered constructs.In addition,medical devices used for diagnostics and treatment of various pathological conditions have been developed.The growing body of research on AM reveals its great potential in medical applications.The goal of this review is to highlight the usefulness and elucidate the current limitations of AM applications in the medical field.展开更多
Metallic implants are widely used in internal fixation of bone fracture in surgical treatment.They are mainly used for providing mechanical support and stability during bone reunion,which usually takes a few months to...Metallic implants are widely used in internal fixation of bone fracture in surgical treatment.They are mainly used for providing mechanical support and stability during bone reunion,which usually takes a few months to complete.Conventional implants made of stainless steels,Ti-based alloys and CoCrMo alloys have been widely used for orthopedic reconstruction due to their high strength and high corrosion resistance.Such metallic implants will remain permanently inside the body after implantation,and a second surgery after bone healing is needed because the long-term presence of implant will lead to various problems.An implant removal surgery not only incurs expenditure,but also risk and psychological burden.As a consequence,studies on the development of biodegradable implants,which would degrade and disappear in vivo after bone reunion is completed,have drawn researchers’attention.In this connection,Mg-based alloys have shown great potentials as promising implant materials mainly due to their low density,inherent biocompatibility,biodegradability and mechanical properties close to those of bone.However,the high degradation rate of Mg-based implants in vivo is the biggest hurdle to overcome.Apart from materials selection,a fixation implant is ideally tailor-made in size and shape for an individual case,for best surgical outcomes.Therefore,laser additive manufacturing(LAM),with the advent of sophisticated laser systems and software,is an ideal process to solve these problems.In this paper,we reviewed the progress in LAM of biodegradable Mg-based alloys for biomedical applications.The effect of powder properties and laser processing parameter on the formability and quality was thoroughly discussed.The microstructure,phase constituents and metallurgical defects formed in the LAMed samples were delineated.The mechanical properties,corrosion resistance,biocompatibility and antibacterial properties of the LAMed samples were summarized and compared with samples fabricated by traditional processes.In addition,we have made some suggestions for advancing the knowledge in the LAM of Mg-based alloys for biomedical implants.展开更多
Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. ...Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available.This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.展开更多
背景:近年来,金属有机框架由于其特有性质在生物医学领域应用广泛,可以将金属有机框架应用于种植体表面改性,以改善其生物学性能,提高手术成功率。目的:介绍种植体表面改性领域常用的金属有机框架以及种植体表面金属有机框架改性的制备...背景:近年来,金属有机框架由于其特有性质在生物医学领域应用广泛,可以将金属有机框架应用于种植体表面改性,以改善其生物学性能,提高手术成功率。目的:介绍种植体表面改性领域常用的金属有机框架以及种植体表面金属有机框架改性的制备和作用机制。方法:采用计算机检索中国知网、PubMed和Web of Science数据库中有关金属有机框架应用于种植体表面改性的研究资料,选取发表于2010-2023年的相关文献,最终纳入64篇文献进行综述分析。结果与结论:①金属有机框架具有孔隙率高、比表面积大及空间结构多样等性质,作为一种生物活性材料,金属有机框架在组织工程和再生医学中逐渐引起重视。②种植体改性领域常用的金属有机框架类型主要有3种:类沸石骨架材料最常作为载体应用,负载各种药物和生物分子,MIL系列材料适用于药物载体和纳米酶,Bio-金属有机框架因结构多样而应用广泛,突出特点是优异的生物安全性。③金属有机框架改性的种植体材料制备方法大致分为两类,第一类是将已合成的金属有机框架结合到预处理植入材料上,第二类是在预处理的材料表面原位合成金属有机框架。④种植体表面的金属有机框架通过降解释放自身组分、负载药物、催化活性反应及与其他材料联合等多种机制,赋予种植体抗菌抗炎促进骨整合的特性,但金属有机框架涂层制备方法还需要进一步完善,同时应深入探究材料后续代谢和分布问题,积极推动其在临床上的应用。展开更多
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi...Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.展开更多
The last decade has seen a significant growth in the market for alloys used for implants,especially for those intended for orthopedic implants.Research into biodegradable magnesium-based alloys has made great strides ...The last decade has seen a significant growth in the market for alloys used for implants,especially for those intended for orthopedic implants.Research into biodegradable magnesium-based alloys has made great strides in this period,so huge progress has been made in their use in the medical industry.The important factors that led to the intensification of research in this regard,were social but also economic,wanting to improve the quality of life,by reducing the use of conventionally permanent metallic implants(stainless steel,cobalt-based alloys,and titanium alloys)which involve the second implant removal surgery and other undesirable effects(stress shielding and metal ion releases),with a negative impact on the emotional and physical condition of patients,and by significantly reducing the costs for both the patient and the health system in the field of orthopedics.This paper refers to the impact and importance of biodegradable Mg alloys,reviewing the beginning of their development,the significant characteristics that make them so desirable for such applications(orthopedic implants)but also the characteristics that must be modulated(corrosion rate and mechanical properties)to arrive at the ideal product for the targeted application.It highlights,in detail,the mechanism and aspects related to the corrosion behaviour of Mg alloys,electrochemical characterization techniques/methods,as well as strategies to improve the corrosion behaviour and mechanical properties of these types of biodegradable alloys.The means of optimization,the category and the effect of the alloying elements,the design criteria,the requirements that the implants of biodegradable alloys Mg-based must meet and the aspects related to their efficiency are also presented.Finally,the potential applications in the specialized clinics,as well as the final products currently used and made by important prestigious companies in the world are approached.展开更多
文摘The silicon micro-strip detector was fabricated by MEMS (Micro Electro Mechanical Systems) techniques[1].According to the application requirement and the process parameters, a large amount of B+ ions at 40 keV and1.51014 ions/cm2 have been implanted into the wafers. It is found that more than 50% of the micro strips cannotform a functional P-N junction. Based on the suggestion of simulation results, the process of stratified implantationwas then applied with the following procedures. B+ ions were firstly implanted into the wafer at 40 keV, 21014ions/cm2, and then sequentially implanted at 20 keV, 21014 ions/cm2 into the same wafers. Preliminary testresults show that over 95% of the silicon micro-strips in this batch have a perfect P-N junction with a reverse bodyresistance larger than 500 MΩcm. The energy resolution for 5.156 MeV particles of 239Pu source is about 0.8%or even less, as shown in Fig. 1. The structure of the detectors is therefore definitely different from the designeddevices (Fig. 2(a)) shown in Fig. 1, which is more like a P-P+-N structure as shown in Fig. 2(b).
文摘Purpose: To analyze the application of percutaneous transluminal angioplasty and stenting in acute deep venous thrombosis of lower extremities. Methods: 70 patients were divided into two groups according to the presence or absence of percutaneous transluminal angioplasty and stenting. Results: The mean circumferential diameter difference between the affected limbs and the healthy limbs and the knees at 15 cm was statistically significant. The cure rate and effective rate of the research group were higher than those of the control group (P<0.05). Conclusion: Percutaneous transluminal angioplasty and stenting are of high value in acute lower extremity deep venous thrombosis.
文摘In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases.Secondary surgical operation(s)usually become inevitable to prevent long term exposure of body with the toxic implant contents.The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals,alloys,and metallic glasses.As such,the nature of metallic biomaterials are transformed from the bioinert to bioactive and multi-biofunctional(anti-bacterial,anti-proliferation,anti-cancer,etc.).Magnesium-based biomaterials are candidates to be used as new generation biodegradable metals.Magnesium(Mg)can dissolve in body fluid that means the implanted Mg can degrade during healing process,and if the degradation is controlled it would leave no debris after the completion of healing.Hence,the need for secondary surgical operation(s)for the implant removal could be eliminated.Besides its biocompatibility,the inherent mechanical properties of Mg are very similar to those of human bone.Researchers have been working on synthesis and characterization of Mg-based biomaterials with a variety of composition in order to control the degradation rate of Mg since uncontrolled degradation could result in loss of mechanical integrity,metal contamination in the body and intolerable hydrogen evolution by tissue.It was observed that the applied methods of synthesis and the choice of components affect the characteristics and performance of the Mg-based biomaterials.Researchers have synthesized many Mg-based materials through several synthesis routes and investigated their mechanical properties,biocompatibility and degradation behavior through in vitro,in vivo and in silico studies.This paper is a comprehensive review that compiles,analyses and critically discusses the recent literature on the important aspects of Mg-based biomaterials.
基金supported by the National Natural Science Foundation of China(Nos.52275199 and 52335004)Beijing–Tianjin–Hebei Fundamental Research Cooperation Project(No.J230001).
文摘Organic polymer coatings have been commonly used in biomedical field,which play an important role in achieving biological antifouling,drug delivery,and bacteriostasis.With the continuous development of polymer science,organic polymer coatings can be designed with complex and advanced functions,which is conducive to the construction of biomedical materials with different performances.According to different physical and chemical properties of materials,biomedical organic polymer coating materials are classified into zwitterionic polymers,non-ionic polymers,and biomacromolecules.The strategies of combining coatings with substrates include physical adsorption,chemical grafting,and self-adhesion.Though the coating materials and construction methods are different,many biomedical polymer coatings have been developed to achieve excellent performances,i.e.,enhanced lubrication,anti-inflammation,antifouling,antibacterial,drug release,anti-encrustation,anti-thrombosis,etc.Consequently,a large number of biomedical polymer coatings have been used in artificial lungs,ureteral stent,vascular flow diverter,and artificial joints.In this review,we summarize different types,properties,construction methods,biological functions,and clinical applications of biomedical organic polymer coatings,and prospect future direction for development of organic polymer coatings in biomedical field.It is anticipated that this review can be useful for the design and synthesis of functional organic polymer coatings with various biomedical purposes.
基金This work is sponsored by the National Key R&D Program of China(2018YFB1105504)the National Natural Science Foundation of China(81572093)This work is also supported by the funding support from Beijing Laboratory of Biomedical Materials and start-up fund from Beijing University of Chemical Technology。
文摘In the past few decades,additive manufacturing(AM)has been developed and applied as a cost-effective and versatile technique for the fabrication of geometrically complex objects in the medical industry.In this review,we discuss current advances of AM in medical applications for the generation of pharmaceuticals,medical implants,and medical devices.Oral and transdermal drugs can be fabricated by a variety of AM technologies.Different types of hard and soft clinical implants have also been realized by AM,with the goal of producing tissue-engineered constructs.In addition,medical devices used for diagnostics and treatment of various pathological conditions have been developed.The growing body of research on AM reveals its great potential in medical applications.The goal of this review is to highlight the usefulness and elucidate the current limitations of AM applications in the medical field.
基金fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘Metallic implants are widely used in internal fixation of bone fracture in surgical treatment.They are mainly used for providing mechanical support and stability during bone reunion,which usually takes a few months to complete.Conventional implants made of stainless steels,Ti-based alloys and CoCrMo alloys have been widely used for orthopedic reconstruction due to their high strength and high corrosion resistance.Such metallic implants will remain permanently inside the body after implantation,and a second surgery after bone healing is needed because the long-term presence of implant will lead to various problems.An implant removal surgery not only incurs expenditure,but also risk and psychological burden.As a consequence,studies on the development of biodegradable implants,which would degrade and disappear in vivo after bone reunion is completed,have drawn researchers’attention.In this connection,Mg-based alloys have shown great potentials as promising implant materials mainly due to their low density,inherent biocompatibility,biodegradability and mechanical properties close to those of bone.However,the high degradation rate of Mg-based implants in vivo is the biggest hurdle to overcome.Apart from materials selection,a fixation implant is ideally tailor-made in size and shape for an individual case,for best surgical outcomes.Therefore,laser additive manufacturing(LAM),with the advent of sophisticated laser systems and software,is an ideal process to solve these problems.In this paper,we reviewed the progress in LAM of biodegradable Mg-based alloys for biomedical applications.The effect of powder properties and laser processing parameter on the formability and quality was thoroughly discussed.The microstructure,phase constituents and metallurgical defects formed in the LAMed samples were delineated.The mechanical properties,corrosion resistance,biocompatibility and antibacterial properties of the LAMed samples were summarized and compared with samples fabricated by traditional processes.In addition,we have made some suggestions for advancing the knowledge in the LAM of Mg-based alloys for biomedical implants.
文摘Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available.This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.
文摘背景:近年来,金属有机框架由于其特有性质在生物医学领域应用广泛,可以将金属有机框架应用于种植体表面改性,以改善其生物学性能,提高手术成功率。目的:介绍种植体表面改性领域常用的金属有机框架以及种植体表面金属有机框架改性的制备和作用机制。方法:采用计算机检索中国知网、PubMed和Web of Science数据库中有关金属有机框架应用于种植体表面改性的研究资料,选取发表于2010-2023年的相关文献,最终纳入64篇文献进行综述分析。结果与结论:①金属有机框架具有孔隙率高、比表面积大及空间结构多样等性质,作为一种生物活性材料,金属有机框架在组织工程和再生医学中逐渐引起重视。②种植体改性领域常用的金属有机框架类型主要有3种:类沸石骨架材料最常作为载体应用,负载各种药物和生物分子,MIL系列材料适用于药物载体和纳米酶,Bio-金属有机框架因结构多样而应用广泛,突出特点是优异的生物安全性。③金属有机框架改性的种植体材料制备方法大致分为两类,第一类是将已合成的金属有机框架结合到预处理植入材料上,第二类是在预处理的材料表面原位合成金属有机框架。④种植体表面的金属有机框架通过降解释放自身组分、负载药物、催化活性反应及与其他材料联合等多种机制,赋予种植体抗菌抗炎促进骨整合的特性,但金属有机框架涂层制备方法还需要进一步完善,同时应深入探究材料后续代谢和分布问题,积极推动其在临床上的应用。
基金the Australian Research Council(ARC)through the discovery grant DP210101862。
文摘Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.
基金performed under contracts no.46N/2019-project no.PN19310102/2019 and 30PFE/2018 between the National Institute for Research and Development in Electrical Engineering ICPE-CA and the Romanian Ministry of Research and Innovation
文摘The last decade has seen a significant growth in the market for alloys used for implants,especially for those intended for orthopedic implants.Research into biodegradable magnesium-based alloys has made great strides in this period,so huge progress has been made in their use in the medical industry.The important factors that led to the intensification of research in this regard,were social but also economic,wanting to improve the quality of life,by reducing the use of conventionally permanent metallic implants(stainless steel,cobalt-based alloys,and titanium alloys)which involve the second implant removal surgery and other undesirable effects(stress shielding and metal ion releases),with a negative impact on the emotional and physical condition of patients,and by significantly reducing the costs for both the patient and the health system in the field of orthopedics.This paper refers to the impact and importance of biodegradable Mg alloys,reviewing the beginning of their development,the significant characteristics that make them so desirable for such applications(orthopedic implants)but also the characteristics that must be modulated(corrosion rate and mechanical properties)to arrive at the ideal product for the targeted application.It highlights,in detail,the mechanism and aspects related to the corrosion behaviour of Mg alloys,electrochemical characterization techniques/methods,as well as strategies to improve the corrosion behaviour and mechanical properties of these types of biodegradable alloys.The means of optimization,the category and the effect of the alloying elements,the design criteria,the requirements that the implants of biodegradable alloys Mg-based must meet and the aspects related to their efficiency are also presented.Finally,the potential applications in the specialized clinics,as well as the final products currently used and made by important prestigious companies in the world are approached.