本论文使用球差校正的高角环形暗场扫描透射电镜(Aberration-Corrected High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy,HAADF-STEM)结合选区电子衍射(Selected Area Electron Diffraction,SAED)技术系统表...本论文使用球差校正的高角环形暗场扫描透射电镜(Aberration-Corrected High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy,HAADF-STEM)结合选区电子衍射(Selected Area Electron Diffraction,SAED)技术系统表征了Mg-19.6 wt.%Gd合金300℃等温时效100 h后的时效析出行为。研究结果表明,Mg-19.6 Gd合金时效后期析出的平衡相为β-Mg5Gd。β-Mg5Gd相为fcc结构(空间群:■;晶格参数:a=22.34?),呈透镜状。β-Mg5Gd相具有一个■的惯习面,它们沿■3个方向均匀分布。β-Mg5Gd相在β1-Mg3Gd中形核,并由内而外生长取代β1相。β相与β1,以及与α-Mg基体都是完全共格的,其与β1相、基体的取向关系为[110]β//[110]β1//[0001]α;■。展开更多
Controversial experimental reports on the crystal structure of T 1 precipitates in Al-Li-Cu alloys have ex-isted for a long time,and all of them can be classified into five models.To clarify its ground-state atomic st...Controversial experimental reports on the crystal structure of T 1 precipitates in Al-Li-Cu alloys have ex-isted for a long time,and all of them can be classified into five models.To clarify its ground-state atomic structure,herein,we have combined high-throughput first-principles calculations and CALPHAD,as well as aberration-corrected HAADF-STEM experiments.Employing the special quasi-random structure(SQS)and supercell approximation(SPA)methods to simulate the local disorder on Al-Cu sub-lattices,we find that none of the present models can satisfy the phase stability in Al-Li-Cu ternary system based on temperature-dependent convex hull analysis.Using the cluster expansion(CE)formulas,structural predic-tions derived from the five-frame models were performed.Subsequently,by introducing the vibrational contribution to the free energy at aging temperatures,we proposed a novel ground-state T 1 structure that maintains a coherent relationship with Al-matrix at the<112>Al orientation.The underlying phase transition between the variants of T 1 precipitates was further discussed.By means of ab initio molecular dynamics(AIMD)simulations,we resolved the controversy regarding the number of atomic layers con-stituting the T 1 phase and acknowledged the existence of Al-Li corrugated layers.The root cause of this structural distortion is triggered by atomic forces and bondings.Our work can have an positive impact on the novel fourth generation of Al-Cu-Li alloy designs by engineering the T 1 strengthening phase.展开更多
The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-ST...The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM)corrected by atomic Cs.By using HAADF-STEM,the rectangularβphases were observed in the underage and peak aging stages in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy.Theβphase could be precipitated from the previously precipitatedβphase,and theβphase grew in steps when it was precipitated.A special transition structure of three atomic layer thicknesses was first observed at the edge of theβphase and the structure of this interface is probably as theβ/Mg_(1) interface for the analysis of thermodynamic characterization and electronic characterization.Theβ'phase and theβ_(H) structure were precipitated only at the edge of the length directions of theβphase.Theβ'phase continues to grow into aβphase directly without the formation ofβ_(1) phase,resulting in an increase in the length of theβphase,which is discovered for the first time.展开更多
Crystal structures,growth characteristics,and transformation of the precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr(wt.%)alloy aged at 200℃for various durations were investigated using transmission electron microscopy(TEM)...Crystal structures,growth characteristics,and transformation of the precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr(wt.%)alloy aged at 200℃for various durations were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).A detailed Mg-Gd type precipitation sequence for Mg-Gd-Y-Nd-Zn alloys was proposed as follows:supersaturated solid solution→solute clusters→zigzag GP zones+β''(I)→β'→β'+protrusions/joints→pre-β_(1)→β_(1)→β.Solute clusters formed in the early stage of aging consisted of one or more rare-earth(RE)/Zn-rich atomic columns with different configura-tions.RE/Zn-rich solute clusters grew into zigzag GP zones andβ''(I)as aging time extending.The paired-zigzag GP zones might grow up to beβ'precipitates directly.In the peak-and plat-aging stages,the number of solute clusters in the matrix decreased until they disappeared,and most existed as zigzag arrays and super hexagons.Protrusions formed at the end ofβ'at an angle of 120°,then grew into joints when two differentβ'variants encountered together.Protrusions/joints comprise zigzag arrays,super-hexagons,β'F,β''(II),β_(T),and hybrid structures rich in solute atoms,and act as catalysts for the growth of theβ'variants.Largerβ'grow by joints consumption while smallerβ'precipitates dissolve to form joints.β_(1)precipitates essentially evolve from pre-β_(1)precipitates,with four-point diamond structures formed by RE/Zn atomic substitution and atomic migration based on the originalα-Mg structure.展开更多
The formation and evolution of Gd-rich precipitates companying with the matrix structure ordering in a Mg_(97)Gd_(2)Cd_(1)(at.%)solid-solution alloy aged at 200℃have been systemically investigated using high-angle an...The formation and evolution of Gd-rich precipitates companying with the matrix structure ordering in a Mg_(97)Gd_(2)Cd_(1)(at.%)solid-solution alloy aged at 200℃have been systemically investigated using high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).The results show that Gd-rich precipitation dynamics during the aging treatment are noticeably affected by a continuous ordering transformation in the matrix.The ordering transformation process involving mainly re-distribution of Cd atoms was revealed to occur in the following way:random super-saturated solid solution(S.S.S.S.)→B19-type ordered domains→D019-type ordered domains.Four Gd(Cd)-rich precipitates,G.P.Ⅰ zone,G.P.Ⅱ zone,β′andβ_(1)phases,have been observed to be formed in sequence to coexist with the various ordered domains.Based on the HAADF-STEM characterization on the aging microstructures at different aging stages,it can be concluded that the Cd-addition and related matrix structure ordering can play significant roles in modifying the early-stage G.P.zone structure,altering the morphology ofβ′precipitates and promoting the forming ability of theβ_(1)precipitate.展开更多
Magnesium-lithium alloys with high lithium content have been attracting significant attention because of their low density,high formability and corrosion resistance.These properties are dependent on the distribution o...Magnesium-lithium alloys with high lithium content have been attracting significant attention because of their low density,high formability and corrosion resistance.These properties are dependent on the distribution of lithium,which is difficult to map in the presence of magnesium.In this work,a ratio spectrum-imaging method with electron energy-loss spectroscopy(EELS)is demonstrated,which enables the mapping of lithium.In application to LAZ941(Mg-9Li-4Al-1Zn in wt.%),this technique revealed that a key precipitate in the microstructure,previously thought by some to be Mg_(17)Al_(12),is in fact rich in lithium.This result was corroborated with a structural investigation by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),showing this phase to be Al_(1-x)Zn_(x)Li,with x<<1.This work indicates the potential offered by this technique for mapping lithium in materials.展开更多
The effect of pre-straining on the structure and formation mechanism of precipitates in an Al−Mg−Si−Cu alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission ele...The effect of pre-straining on the structure and formation mechanism of precipitates in an Al−Mg−Si−Cu alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Elongated and string-like precipitates are formed along the dislocations in the pre-strained Al−Mg−Si−Cu alloy.The precipitates formed along the dislocations exhibit three features:non-periodic atomic arrangement within the precipitate;Cu segregation occurring at the precipitate/α(Al)interface;different orientations presented in one individual precipitate.Four different formation mechanisms of these heterogeneous precipitates were proposed as follows:elongated precipitates are formed independently in the dislocation;string-like precipitates are formed directly along the dislocations;different precipitates encounter to form string-like precipitates;precipitates are connected by other phases or solute enrichment regions.These different formation mechanisms are responsible for forming different atomic structures and morphologies of precipitates.展开更多
A combinatorial approach was applied to investigating the influence of Fe content on the microstructures and properties of Ti6Al4V alloy.A diffusion couple was manufactured with Ti6Al4V and Ti6Al4V20Fe alloys and anne...A combinatorial approach was applied to investigating the influence of Fe content on the microstructures and properties of Ti6Al4V alloy.A diffusion couple was manufactured with Ti6Al4V and Ti6Al4V20Fe alloys and annealed at 1000°C for 600 h to obtain a wide range of compositions.By combining electron probe micro-analysis(EPMA),scanning electron microscopy(SEM)and nanoindentation,the relationships between composition and microstructure as well as hardness were determined.It is found that after aging the Ti6Al4V5Fe sample contains reasonable(about 55%)volume fraction of fineαphase and shows the peak hardness among the Ti6Al4VxFe alloys.Therefore,it is a promising candidate for the development of titanium alloys.HAADF-STEM and XRD reveal that after quenching from the singleβphase field,the metastableα''lamellae form in the Ti6Al4V5Fe alloy,and on subsequent isothermal aging,theα''lamellae become coarse and act as precursors/preferential nucleation sites for the stableαphase.展开更多
The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and hig...The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α.展开更多
文摘本论文使用球差校正的高角环形暗场扫描透射电镜(Aberration-Corrected High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy,HAADF-STEM)结合选区电子衍射(Selected Area Electron Diffraction,SAED)技术系统表征了Mg-19.6 wt.%Gd合金300℃等温时效100 h后的时效析出行为。研究结果表明,Mg-19.6 Gd合金时效后期析出的平衡相为β-Mg5Gd。β-Mg5Gd相为fcc结构(空间群:■;晶格参数:a=22.34?),呈透镜状。β-Mg5Gd相具有一个■的惯习面,它们沿■3个方向均匀分布。β-Mg5Gd相在β1-Mg3Gd中形核,并由内而外生长取代β1相。β相与β1,以及与α-Mg基体都是完全共格的,其与β1相、基体的取向关系为[110]β//[110]β1//[0001]α;■。
基金supported by the National Natural Science Foundation of China(52073030).
文摘Controversial experimental reports on the crystal structure of T 1 precipitates in Al-Li-Cu alloys have ex-isted for a long time,and all of them can be classified into five models.To clarify its ground-state atomic structure,herein,we have combined high-throughput first-principles calculations and CALPHAD,as well as aberration-corrected HAADF-STEM experiments.Employing the special quasi-random structure(SQS)and supercell approximation(SPA)methods to simulate the local disorder on Al-Cu sub-lattices,we find that none of the present models can satisfy the phase stability in Al-Li-Cu ternary system based on temperature-dependent convex hull analysis.Using the cluster expansion(CE)formulas,structural predic-tions derived from the five-frame models were performed.Subsequently,by introducing the vibrational contribution to the free energy at aging temperatures,we proposed a novel ground-state T 1 structure that maintains a coherent relationship with Al-matrix at the<112>Al orientation.The underlying phase transition between the variants of T 1 precipitates was further discussed.By means of ab initio molecular dynamics(AIMD)simulations,we resolved the controversy regarding the number of atomic layers con-stituting the T 1 phase and acknowledged the existence of Al-Li corrugated layers.The root cause of this structural distortion is triggered by atomic forces and bondings.Our work can have an positive impact on the novel fourth generation of Al-Cu-Li alloy designs by engineering the T 1 strengthening phase.
基金financially supported by the National Natural Science Foundation of China(Grant No.51825101)the National Key Research and Development Program of China(Grant No.2016YFB0701201)。
文摘The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM)corrected by atomic Cs.By using HAADF-STEM,the rectangularβphases were observed in the underage and peak aging stages in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy.Theβphase could be precipitated from the previously precipitatedβphase,and theβphase grew in steps when it was precipitated.A special transition structure of three atomic layer thicknesses was first observed at the edge of theβphase and the structure of this interface is probably as theβ/Mg_(1) interface for the analysis of thermodynamic characterization and electronic characterization.Theβ'phase and theβ_(H) structure were precipitated only at the edge of the length directions of theβphase.Theβ'phase continues to grow into aβphase directly without the formation ofβ_(1) phase,resulting in an increase in the length of theβphase,which is discovered for the first time.
基金supported by the National Natural Science Foundation of China(51871195)Youth Fund Project of GRINM(G12620213129038)Henan Provincial Department of Science and Technology Research Project(No.222102230113).
文摘Crystal structures,growth characteristics,and transformation of the precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr(wt.%)alloy aged at 200℃for various durations were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).A detailed Mg-Gd type precipitation sequence for Mg-Gd-Y-Nd-Zn alloys was proposed as follows:supersaturated solid solution→solute clusters→zigzag GP zones+β''(I)→β'→β'+protrusions/joints→pre-β_(1)→β_(1)→β.Solute clusters formed in the early stage of aging consisted of one or more rare-earth(RE)/Zn-rich atomic columns with different configura-tions.RE/Zn-rich solute clusters grew into zigzag GP zones andβ''(I)as aging time extending.The paired-zigzag GP zones might grow up to beβ'precipitates directly.In the peak-and plat-aging stages,the number of solute clusters in the matrix decreased until they disappeared,and most existed as zigzag arrays and super hexagons.Protrusions formed at the end ofβ'at an angle of 120°,then grew into joints when two differentβ'variants encountered together.Protrusions/joints comprise zigzag arrays,super-hexagons,β'F,β''(II),β_(T),and hybrid structures rich in solute atoms,and act as catalysts for the growth of theβ'variants.Largerβ'grow by joints consumption while smallerβ'precipitates dissolve to form joints.β_(1)precipitates essentially evolve from pre-β_(1)precipitates,with four-point diamond structures formed by RE/Zn atomic substitution and atomic migration based on the originalα-Mg structure.
基金The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China[grant number 11274027]Beijing Municipal Natural Science Foundation[grant number 2092005].
文摘The formation and evolution of Gd-rich precipitates companying with the matrix structure ordering in a Mg_(97)Gd_(2)Cd_(1)(at.%)solid-solution alloy aged at 200℃have been systemically investigated using high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).The results show that Gd-rich precipitation dynamics during the aging treatment are noticeably affected by a continuous ordering transformation in the matrix.The ordering transformation process involving mainly re-distribution of Cd atoms was revealed to occur in the following way:random super-saturated solid solution(S.S.S.S.)→B19-type ordered domains→D019-type ordered domains.Four Gd(Cd)-rich precipitates,G.P.Ⅰ zone,G.P.Ⅱ zone,β′andβ_(1)phases,have been observed to be formed in sequence to coexist with the various ordered domains.Based on the HAADF-STEM characterization on the aging microstructures at different aging stages,it can be concluded that the Cd-addition and related matrix structure ordering can play significant roles in modifying the early-stage G.P.zone structure,altering the morphology ofβ′precipitates and promoting the forming ability of theβ_(1)precipitate.
基金the Australian Research Council (ARC) for funding this work[Grant no.DP190103592]the use of instruments and scientific and technical assistance at the Monash Centre for Electron Microscopy,a Node of Microscopy Australiafunded by ARC grants LE110100223(F20),LE0454166(Titan)and LE170100118(Spectra-φ)。
文摘Magnesium-lithium alloys with high lithium content have been attracting significant attention because of their low density,high formability and corrosion resistance.These properties are dependent on the distribution of lithium,which is difficult to map in the presence of magnesium.In this work,a ratio spectrum-imaging method with electron energy-loss spectroscopy(EELS)is demonstrated,which enables the mapping of lithium.In application to LAZ941(Mg-9Li-4Al-1Zn in wt.%),this technique revealed that a key precipitate in the microstructure,previously thought by some to be Mg_(17)Al_(12),is in fact rich in lithium.This result was corroborated with a structural investigation by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),showing this phase to be Al_(1-x)Zn_(x)Li,with x<<1.This work indicates the potential offered by this technique for mapping lithium in materials.
基金the Natural Science Foundation of Jiangsu Province,China(No.BK20201035)the Talent Research Fund in Nanjing Institute of Technology,China(No.YKJ201957)+1 种基金the National Natural Science Foundation of China(Nos.51871035,52001159)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Nos.20KJB430016,20KJB430012).
文摘The effect of pre-straining on the structure and formation mechanism of precipitates in an Al−Mg−Si−Cu alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Elongated and string-like precipitates are formed along the dislocations in the pre-strained Al−Mg−Si−Cu alloy.The precipitates formed along the dislocations exhibit three features:non-periodic atomic arrangement within the precipitate;Cu segregation occurring at the precipitate/α(Al)interface;different orientations presented in one individual precipitate.Four different formation mechanisms of these heterogeneous precipitates were proposed as follows:elongated precipitates are formed independently in the dislocation;string-like precipitates are formed directly along the dislocations;different precipitates encounter to form string-like precipitates;precipitates are connected by other phases or solute enrichment regions.These different formation mechanisms are responsible for forming different atomic structures and morphologies of precipitates.
基金Project(2014CB644000)supported by the National Basic Research Program of ChinaProject(2016YFB0701301)supported by the National Key Technology R&D Program of China+1 种基金Projects(51371200,51671218)supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China
文摘A combinatorial approach was applied to investigating the influence of Fe content on the microstructures and properties of Ti6Al4V alloy.A diffusion couple was manufactured with Ti6Al4V and Ti6Al4V20Fe alloys and annealed at 1000°C for 600 h to obtain a wide range of compositions.By combining electron probe micro-analysis(EPMA),scanning electron microscopy(SEM)and nanoindentation,the relationships between composition and microstructure as well as hardness were determined.It is found that after aging the Ti6Al4V5Fe sample contains reasonable(about 55%)volume fraction of fineαphase and shows the peak hardness among the Ti6Al4VxFe alloys.Therefore,it is a promising candidate for the development of titanium alloys.HAADF-STEM and XRD reveal that after quenching from the singleβphase field,the metastableα''lamellae form in the Ti6Al4V5Fe alloy,and on subsequent isothermal aging,theα''lamellae become coarse and act as precursors/preferential nucleation sites for the stableαphase.
基金Projects(51871195,51501015)supported by the National Natural Science Foundation of ChinaProject(TC170A5SU-1)supported by Ministry of Industry and Information Technology of China。
文摘The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α.