We have delivered viral vectors containing either Chop2 fused with GFP, Channelrhodopsin-2 (ChR2), or Halorhodopsin (HaloR) fused with mCherry (to form light gated cation channels or chloride pumps, respectively...We have delivered viral vectors containing either Chop2 fused with GFP, Channelrhodopsin-2 (ChR2), or Halorhodopsin (HaloR) fused with mCherry (to form light gated cation channels or chloride pumps, respectively), into the dorsal cochlear nucleus (DCN). One to eighteen months later we examined the CN and inferior colliculus (IC) for evidence of virally transfected cells and processes. Production of ChR2 and HaloR was observed throughout the DCN. Rhodopsin localization within neurons was determined, with elongate, fusiform and giant cells identified based on morphology and location within the DCN. Production of ChR2 and HaloR was found at both the injection site as well as in regions projecting to and from the DCN. Light driven neuronal activity in the DCN was dependent upon the wavelength and intensity of the light, with only the appropriate wavelength resulting in activation and higher intensity light resulting in more neuronal activity. Transfecting cells via viral delivery of rhodopsins can be useful as a tract tracer and as a neuronal marker to delineate pathways. In the future rhodopsin delivery and activation may be developed as an alternative to electrical stimulation of neurons.展开更多
Optogenetics is a newly-introduced technology in the life sciences and is gaining increasing attention.It refers to the combination of optical technologies and genetic methods to control the activity of specific cell ...Optogenetics is a newly-introduced technology in the life sciences and is gaining increasing attention.It refers to the combination of optical technologies and genetic methods to control the activity of specific cell groups in living tissue,during which high-resolution spatial and temporal manipulation of cells is achieved.Optogenetics has been applied to numerous regions,including cerebral cortex,hippocampus,ventral tegmental area,nucleus accumbens,striatum,spinal cord,and retina,and has revealed new directions of research in neuroscience and the treatment of related diseases.Since optogenetic tools are controllable at high spatial and temporal resolution,we discuss its applications in these regions in detail and the recent understanding of higher brain functions,such as reward-seeking,learning and memory,and sleep.Further,the possibilities of improved utility of this newly-emerging technology are discussed.We intend to provide a paradigm of the latest advances in neuroscience using optogenetics.展开更多
基金supported by Ralph Wilson Foundation(to A.G.H)Capita Foundation(to A.G.H)
文摘We have delivered viral vectors containing either Chop2 fused with GFP, Channelrhodopsin-2 (ChR2), or Halorhodopsin (HaloR) fused with mCherry (to form light gated cation channels or chloride pumps, respectively), into the dorsal cochlear nucleus (DCN). One to eighteen months later we examined the CN and inferior colliculus (IC) for evidence of virally transfected cells and processes. Production of ChR2 and HaloR was observed throughout the DCN. Rhodopsin localization within neurons was determined, with elongate, fusiform and giant cells identified based on morphology and location within the DCN. Production of ChR2 and HaloR was found at both the injection site as well as in regions projecting to and from the DCN. Light driven neuronal activity in the DCN was dependent upon the wavelength and intensity of the light, with only the appropriate wavelength resulting in activation and higher intensity light resulting in more neuronal activity. Transfecting cells via viral delivery of rhodopsins can be useful as a tract tracer and as a neuronal marker to delineate pathways. In the future rhodopsin delivery and activation may be developed as an alternative to electrical stimulation of neurons.
基金supported by the National Basic Research Program of China (2011CB503700)
文摘Optogenetics is a newly-introduced technology in the life sciences and is gaining increasing attention.It refers to the combination of optical technologies and genetic methods to control the activity of specific cell groups in living tissue,during which high-resolution spatial and temporal manipulation of cells is achieved.Optogenetics has been applied to numerous regions,including cerebral cortex,hippocampus,ventral tegmental area,nucleus accumbens,striatum,spinal cord,and retina,and has revealed new directions of research in neuroscience and the treatment of related diseases.Since optogenetic tools are controllable at high spatial and temporal resolution,we discuss its applications in these regions in detail and the recent understanding of higher brain functions,such as reward-seeking,learning and memory,and sleep.Further,the possibilities of improved utility of this newly-emerging technology are discussed.We intend to provide a paradigm of the latest advances in neuroscience using optogenetics.