The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ...The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.展开更多
With the rapid growth in fingerprint databases, it has become necessary to develop excellent fingerprint indexing to achieve efficiency and accuracy. Fingerprint indexing has been widely studied with real-valued featu...With the rapid growth in fingerprint databases, it has become necessary to develop excellent fingerprint indexing to achieve efficiency and accuracy. Fingerprint indexing has been widely studied with real-valued features,but few studies focus on binary feature representation, which is more suitable to identify fingerprints efficiently in large-scale fingerprint databases. In this study, we propose a deep compact binary minutia cylinder code(DCBMCC)as an effective and discriminative feature representation for fingerprint indexing. Specifically, the minutia cylinder code(MCC), as the state-of-the-art fingerprint representation, is analyzed and its shortcomings are revealed.Accordingly, we propose a novel fingerprint indexing method based on deep neural networks to learn DCBMCC.Our novel network restricts the penultimate layer to directly output binary codes. Moreover, we incorporate independence, balance, quantization-loss-minimum, and similarity-preservation properties in this learning process.Eventually, a multi-index hashing(MIH) based fingerprint indexing scheme further speeds up the exact search in the Hamming space by building multiple hash tables on binary code substrings. Furthermore, numerous experiments on public databases show that the proposed approach is an outstanding fingerprint indexing method since it has an extremely small error rate with a very low penetration rate.展开更多
文摘The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.
基金supported by the National Natural Science Foundation of China(Nos.11331012,11571014,and 11731013)
文摘With the rapid growth in fingerprint databases, it has become necessary to develop excellent fingerprint indexing to achieve efficiency and accuracy. Fingerprint indexing has been widely studied with real-valued features,but few studies focus on binary feature representation, which is more suitable to identify fingerprints efficiently in large-scale fingerprint databases. In this study, we propose a deep compact binary minutia cylinder code(DCBMCC)as an effective and discriminative feature representation for fingerprint indexing. Specifically, the minutia cylinder code(MCC), as the state-of-the-art fingerprint representation, is analyzed and its shortcomings are revealed.Accordingly, we propose a novel fingerprint indexing method based on deep neural networks to learn DCBMCC.Our novel network restricts the penultimate layer to directly output binary codes. Moreover, we incorporate independence, balance, quantization-loss-minimum, and similarity-preservation properties in this learning process.Eventually, a multi-index hashing(MIH) based fingerprint indexing scheme further speeds up the exact search in the Hamming space by building multiple hash tables on binary code substrings. Furthermore, numerous experiments on public databases show that the proposed approach is an outstanding fingerprint indexing method since it has an extremely small error rate with a very low penetration rate.