Satellite-to-ground terahertz communication is limited by the power of signal source and antenna gain level,and has large path loss,which is difficult to implement.In this paper,a feasible scheme of satellite-to-groun...Satellite-to-ground terahertz communication is limited by the power of signal source and antenna gain level,and has large path loss,which is difficult to implement.In this paper,a feasible scheme of satellite-to-ground terahertz communication using High Altitude Platforms(HAPs)as relay is presented,and the path loss on terahertz communication links is modeled and analyzed.Combined with the path loss model,the transmission loss along HAP-to-ground paths under different seasons and complex weather environment in Ali,Xizang,China is calculated.The results show that the transmission characteristics of terahertz waves in winter and summer are significantly different,mainly reflected in the number and bandwidth of usable atmospheric windows.Furthermore,the additional attenuation caused by the typical sand dust and ice cloud environment on terahertz band can reach 6.1 dB and 1.9 dB at the maximum respectively.With the aid of high gain antenna,the usable communication frequencies of the HAP-to-ground links in winter are significantly more than those in summer.When the transmitting and receiving antenna gain is 40 dBi respectively,the usable communication frequency can reach 1.35 THz in winter,while it is limited to less than 1 THz in summer,up to 0.493 THz.展开更多
A novel Cooperative Directional inter-cell Handover Scheme(CDHS) for High Altitude Platform(HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target ...A novel Cooperative Directional inter-cell Handover Scheme(CDHS) for High Altitude Platform(HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target cell work cooperatively to exploit the traffic fluctuation to improve handover performance.Users in the overlap area of the overloaded handover target cell will be forced to handover directionally before their optimal handover boundary in order to free up resources for the handover calls which would otherwise be dropped due to the shortage of resources and queue time out.Simulation results show that the handover call dropping probability is greatly reduced(at least 60%) compared with the general queue handover scheme,with little performance reduction to the call blocking probability,and the Not in the Best Cell(NBC) average time is only increased moderately.Moreover,an optimal cell radius can be achieved for a specific platform speed by minimizing the unified system performance,which is the linear combination of the handover call dropping probability and the NBC average time.展开更多
In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
High Altitude Platform(HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With ...High Altitude Platform(HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With analysis on HAP movement models for predicting the geographical coverage in the cases of shift horizontally and vertically,yaw,roll and pitch,the mechanisms of steerable antennas movement compensation are investigated.The mechanism is applied to a scenario of 127 cell architecture,with a cell cluster size of four.By the simulation results of Carrier to Interference Ratio(CIR),the steerable antenna movement compensation mechanism decrease influence of HAP movement and guarantee effective coverage of the service area.展开更多
A capacity calculation method of High Altitude Platform System(HAPS) is proposed in which TD-CDMA multiple access schemes are applied.With the influence of both power limit and bandwidth limit on capacity integrated,t...A capacity calculation method of High Altitude Platform System(HAPS) is proposed in which TD-CDMA multiple access schemes are applied.With the influence of both power limit and bandwidth limit on capacity integrated,the paper derives the equations by which the capacity of TD-CDMA systems can be calculated,and performs calculation on a practical system.This calculation method is quite simple and effective with a comparatively small error,which is essential to the de-signing and research on HAPS.展开更多
A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is pr...A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is proposed. Regarding the addressed scenario, when the propagation link between HAPS and train is blocked by obstacles, a three-dimensional (3-D) geometrical single cylinder spatial-temporal channel model is presented, in which closed form, mathematically tractable space-time correlation functions are obtained. It shows that the correlation functions determined by the 3-D model are of significant difference with those of the conventional 2-D model. Based on the analysis model, the paper derives a realized simulation model using sum-of-sinusoids approach, and applies method of equal areas (MEA) and modified method of equal areas (MMEA) to determine the model parameters. The fitting performance of the simulation model with the analysis one is evaluated by two means-square error (MSE) performance criteria. Finally, numerical simulation results verify the mathematical analysis conclusion, when N ≥21, simulation model has an excellent fitness with the analysis one.展开更多
This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embed...This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.展开更多
High Altitude Platform(HAP)systems comprise airborne base stations deployed above 20 km and below 50 km to provide wireless access to devices in large areas.In this paper,two types of applications using HAP systems:on...High Altitude Platform(HAP)systems comprise airborne base stations deployed above 20 km and below 50 km to provide wireless access to devices in large areas.In this paper,two types of applications using HAP systems:one with HAP Station(HAPS)and the other with HAPS as International Mobile Telecommunication(IMT)Base Station(HIBS)are introduced.The HAP system with HAPS has already received wide recognition from the academia and the industry and is considered as an effective solution to provide internet access between fixed points in suburban and rural areas as well as emergencies.HAP systems with HIBS to serve IMT user terminal have just started to draw attention from researchers.The HIBS application is expected to be an anticipate mobile service application complementing the IMT requirement for cell phone or other mobile user terminals in which the service field of HAPS application cannot reach.After describing and characterizing the two types of systems,coexistence studies and simulation results using both the Power Fluxed Density(PFD)mask and separation distance based methods are presented in this paper.This paper also predicts future trends of the evolution paths for the HAP systems along with challenges and possible solutions from the standpoint of system architectures and spectrum regulation.展开更多
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(No.U1730247)the National Defense Basic Scientific Research program of China(No.6142605200301).
文摘Satellite-to-ground terahertz communication is limited by the power of signal source and antenna gain level,and has large path loss,which is difficult to implement.In this paper,a feasible scheme of satellite-to-ground terahertz communication using High Altitude Platforms(HAPs)as relay is presented,and the path loss on terahertz communication links is modeled and analyzed.Combined with the path loss model,the transmission loss along HAP-to-ground paths under different seasons and complex weather environment in Ali,Xizang,China is calculated.The results show that the transmission characteristics of terahertz waves in winter and summer are significantly different,mainly reflected in the number and bandwidth of usable atmospheric windows.Furthermore,the additional attenuation caused by the typical sand dust and ice cloud environment on terahertz band can reach 6.1 dB and 1.9 dB at the maximum respectively.With the aid of high gain antenna,the usable communication frequencies of the HAP-to-ground links in winter are significantly more than those in summer.When the transmitting and receiving antenna gain is 40 dBi respectively,the usable communication frequency can reach 1.35 THz in winter,while it is limited to less than 1 THz in summer,up to 0.493 THz.
基金Supported by the China Scholarship Council (2008611011)Doctoral Fund of Ministry of Education of China(20094307110004)
文摘A novel Cooperative Directional inter-cell Handover Scheme(CDHS) for High Altitude Platform(HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target cell work cooperatively to exploit the traffic fluctuation to improve handover performance.Users in the overlap area of the overloaded handover target cell will be forced to handover directionally before their optimal handover boundary in order to free up resources for the handover calls which would otherwise be dropped due to the shortage of resources and queue time out.Simulation results show that the handover call dropping probability is greatly reduced(at least 60%) compared with the general queue handover scheme,with little performance reduction to the call blocking probability,and the Not in the Best Cell(NBC) average time is only increased moderately.Moreover,an optimal cell radius can be achieved for a specific platform speed by minimizing the unified system performance,which is the linear combination of the handover call dropping probability and the NBC average time.
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.
文摘High Altitude Platform(HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With analysis on HAP movement models for predicting the geographical coverage in the cases of shift horizontally and vertically,yaw,roll and pitch,the mechanisms of steerable antennas movement compensation are investigated.The mechanism is applied to a scenario of 127 cell architecture,with a cell cluster size of four.By the simulation results of Carrier to Interference Ratio(CIR),the steerable antenna movement compensation mechanism decrease influence of HAP movement and guarantee effective coverage of the service area.
文摘A capacity calculation method of High Altitude Platform System(HAPS) is proposed in which TD-CDMA multiple access schemes are applied.With the influence of both power limit and bandwidth limit on capacity integrated,the paper derives the equations by which the capacity of TD-CDMA systems can be calculated,and performs calculation on a practical system.This calculation method is quite simple and effective with a comparatively small error,which is essential to the de-signing and research on HAPS.
基金Supported by the National Natural Science Foundation of China (No. 60532030).
文摘A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is proposed. Regarding the addressed scenario, when the propagation link between HAPS and train is blocked by obstacles, a three-dimensional (3-D) geometrical single cylinder spatial-temporal channel model is presented, in which closed form, mathematically tractable space-time correlation functions are obtained. It shows that the correlation functions determined by the 3-D model are of significant difference with those of the conventional 2-D model. Based on the analysis model, the paper derives a realized simulation model using sum-of-sinusoids approach, and applies method of equal areas (MEA) and modified method of equal areas (MMEA) to determine the model parameters. The fitting performance of the simulation model with the analysis one is evaluated by two means-square error (MSE) performance criteria. Finally, numerical simulation results verify the mathematical analysis conclusion, when N ≥21, simulation model has an excellent fitness with the analysis one.
文摘This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.
文摘High Altitude Platform(HAP)systems comprise airborne base stations deployed above 20 km and below 50 km to provide wireless access to devices in large areas.In this paper,two types of applications using HAP systems:one with HAP Station(HAPS)and the other with HAPS as International Mobile Telecommunication(IMT)Base Station(HIBS)are introduced.The HAP system with HAPS has already received wide recognition from the academia and the industry and is considered as an effective solution to provide internet access between fixed points in suburban and rural areas as well as emergencies.HAP systems with HIBS to serve IMT user terminal have just started to draw attention from researchers.The HIBS application is expected to be an anticipate mobile service application complementing the IMT requirement for cell phone or other mobile user terminals in which the service field of HAPS application cannot reach.After describing and characterizing the two types of systems,coexistence studies and simulation results using both the Power Fluxed Density(PFD)mask and separation distance based methods are presented in this paper.This paper also predicts future trends of the evolution paths for the HAP systems along with challenges and possible solutions from the standpoint of system architectures and spectrum regulation.