期刊文献+
共找到412篇文章
< 1 2 21 >
每页显示 20 50 100
Model Prediction and Optimal Control of Gas Oxygen Content for A Municipal Solid Waste Incineration Process
1
作者 Aijun Yan Tingting Gu 《Instrumentation》 2024年第1期101-111,共11页
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an... In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation. 展开更多
关键词 municipal solid waste incineration gas oxygen content stochastic configuration network model prediction differential evolution
下载PDF
Upper Paleozoic total petroleum system and geological model of natural gas enrichment in Ordos Basin, NW China 被引量:3
2
作者 JIANG Fujie JIA Chengzao +8 位作者 PANG Xiongqi JIANG Lin ZHANG Chunlin MA Xingzhi QI Zhenguo CHEN Junqing PANG Hong HU Tao CHEN Dongxia 《Petroleum Exploration and Development》 SCIE 2023年第2期281-292,共12页
Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is d... Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future. 展开更多
关键词 Upper Paleozoic tight gas total petroleum system gas accumulation characteristics gas enrichment model Or-dos Basin
下载PDF
Shale gas production evaluation framework based on data-driven models 被引量:3
3
作者 You-Wei He Zhi-Yue He +3 位作者 Yong Tang Ying-Jie Xu Ji-Chang Long Kamy Sepehrnoori 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1659-1675,共17页
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to... Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling. 展开更多
关键词 Shale gas Production evaluation Production prediction Data-driven models Carbon neutrality
下载PDF
Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system 被引量:1
4
作者 Shan Liu Wenqi Zhong +2 位作者 Xi Chen Li Sun Lukuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期343-352,共10页
Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hiera... Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances. 展开更多
关键词 Desulphurization system Economics Economic model predictive control Flue gas Optimization Utopia point
下载PDF
The gradual subduction-collision evolution model of Proto-South China Sea and its control on oil and gas 被引量:1
5
作者 Xiaojun Xie Wu Tang +5 位作者 Gongcheng Zhang Zhigang Zhao Shuang Song Shixiang Liu Yibo Wang Jia Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期123-137,共15页
This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The re... This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”. 展开更多
关键词 Proto-South China Sea gradual subduction-collision evolution model oil and gas distribution southern South China Sea BORNEO
下载PDF
Numerical simulation of gas–liquid flow in the bubble column using Wray–Agarwal turbulence model coupled with population balance model 被引量:1
6
作者 Hongwei Liang Wenling Li +3 位作者 Zisheng Feng Jianming Chen Guangwen Chu Yang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期205-223,共19页
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)... In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors.. 展开更多
关键词 CFD–PBM Wray–Agarwal turbulence model gas–liquid flow Bubble column Interfacial force Wall lubrication force
下载PDF
The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models
7
作者 Yaran Bu Changchun Wu +1 位作者 Lili Zuo Qian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期251-261,共11页
The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or inter... The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization models that are transformed from the above multiobjective model based on three allocation rules and the demand of shippers.Next, peak-shaving capacities, which are daily oversupply or overdelivery amounts at inlets or deliveries,are calculated with two-stage transient optimization models. Considering the hydraulic process of a pipeline network and operating schemes of compressor stations, all the above models are mixed-integer nonlinear programming problems. Finally, a case study is made to demonstrate the ability of the models. 展开更多
关键词 Mathematical modelling Natural gas OPTIMIZATION gas transmission capacity gas network
下载PDF
A Dynamic Plunger Lift Model for Shale Gas Wells
8
作者 Shiyu Miao Xiao Liu +3 位作者 Xiaoya Feng Haowen Shi Wei Luo Peng Liu 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1735-1751,共17页
At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the ... At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the production parameters of shale gas wells in comparison to conventional gas wells.In order to mitigate this issue,in the present work,a model is proposed to loosely couple the dynamics of gas inflow into shale gas wells with the dynamics of the liquid inflow.Starting from the flow law that accounts for the four stages of movement of the plunger,a dynamic model of the plunger lift based on the real wellbore trajectory is introduced.The model is then tested against 5 example wells,and it is shown that the accuracy level is higher than 90%.The well‘switch’,optimized on the basis of simulations based on such a model,is tested through on-site experiments.It is shown that,compared with the original switch configuration,the average production of the sample well can be increased by about 15%. 展开更多
关键词 Shale gas well complex and more complex well bore structure plunger lift loose coupling simulation model
下载PDF
Prediction of Sedimentary Microfacies Distribution by Coupling Stochastic Modeling Method in Oil and Gas Energy Resource Exploitation
9
作者 Huan Wang Yingwei Di Yunfei Feng 《Energy and Power Engineering》 CAS 2023年第3期180-189,共10页
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr... In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies. 展开更多
关键词 Coupling modeling Oil and gas Energy Resource Sedimentary Microfacies Seological model Reservoir Prediction
下载PDF
Tight gas charging and accumulation mechanisms and mathematical model
10
作者 ZHOU Nengwu LU Shuangfang +11 位作者 ZHANG Pengfei LIN Zizhi XIAO Dianshi LU Jiamin ZHU Yingkang LIU Yancheng LIN Liming WANG Min JIANG Xinyu LIU Yang WANG Ziyi LI Wenbiao 《Petroleum Exploration and Development》 SCIE 2023年第6期1411-1425,共15页
The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined q... The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin. 展开更多
关键词 tight gas charging and accumulation mechanism mathematical model Xujiaweizi fault depression Songliao Basin Linxing-Huangfu area Ordos Basin
下载PDF
Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes
11
作者 Jinqiang Liang Danzhu Liu +1 位作者 Shuliang Xu Mao Ye 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However... Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance. 展开更多
关键词 model Methanol to olefins REGENERATION Greenhouse gas Processes simulation
下载PDF
Optimization method of refracturing timing for old shale gas wells
12
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
Effect of desorbed gas on microwave breakdown on vacuum side of dielectric window
13
作者 赵朋程 刘忠玉 +3 位作者 王瑞 舒盼盼 郭立新 曹祥鑫 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期85-93,共9页
The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is describe... The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is described by using the electromagnetic particle-in-cell-Monte Carlo collision(PIC-MCC) model. The process of desorption of gas and its influence on the breakdown characteristics are studied. The simulation results show that, due to the accumulation of desorbed gas, the pressure near the dielectric surface increases in time, and the breakdown mechanism transitions from secondary electron multipactor to collision ionization. More and more electrons generated by collision ionization drift to the dielectric surface, so that the amplitude of self-organized normal electric field increases in time and sometimes points to the dielectric surface. Nevertheless, the number of secondary electrons emitted in each microwave cycle is approximately equal to the number of primary electrons. In the early and middle stages of breakdown, the attenuation of the microwave electric field near the dielectric surface is very small. However, the collision ionization causes a sharp increase in the number density of electrons,and the microwave electric field decays rapidly in the later stage of breakdown. Compared with the electromagnetic PIC-MCC simulation results, the mean energy and number of electrons obtained by the electrostatic PIC-MCC model are overestimated in the later stage of breakdown because it does not take into account the attenuation of microwave electric field. The pressure of the desorbed gas predicted by the electromagnetic PIC-MCC model is close to the measured value,when the number of gas atoms desorbed by an incident electron is taken as 0.4. 展开更多
关键词 electron multipactor collision ionization desorbed gas electromagnetic particle-in-cell-Monte Carlo collision model
下载PDF
Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing
14
作者 Chaojun Fan Hao Sun +6 位作者 Sheng Li Lei Yang Bin Xiao Zhenhua Yang Mingkun Luo Xiaofeng Jiang Lijun Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期1-31,共31页
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ... With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated. 展开更多
关键词 Controllable shock wave Permeability enhancement gas extraction Basic principle Experimental test Mathematical models On-site test
下载PDF
Gas hydrate saturation from NGHP 02 LWD data in the Mahanadi Basin
15
作者 Uma Shankar Pradeep Kumar Yadav +1 位作者 Sneha Devi Udham Singh Yadav 《Energy Geoscience》 EI 2024年第2期279-289,共11页
During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock p... During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system. 展开更多
关键词 Mahanadi Basin gas hydrate Sonic log Effective medium modeling Electrical resistivity log Archie’s analysis gas hydrate saturation
下载PDF
Effects of acid-rock reaction on physical properties during CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)injection in shale reservoirs
16
作者 Yi-Fan Wang Jing Wang +2 位作者 Hui-Qing Liu Xiao-Cong Lv Ze-Min Ji 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期272-285,共14页
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China... "Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG. 展开更多
关键词 CO_(2)-rich industrial waste gas Geological storage Acid-rock reaction SHALE Geochemical modelling
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China
17
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 North China Craton eastern Ordos Basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
A new production component method for natural gas development planning
18
作者 Fanliao Wang Jiangchen Han +4 位作者 Shucheng Liu Yanqing Liu Kun Su Jing Du Liru Wang 《Energy Geoscience》 EI 2024年第1期283-292,共10页
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ... Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery. 展开更多
关键词 Production component method Production prediction Life cycle model gas development planning Western Sichuan Basin
下载PDF
3D and 2D topographic correction to estimated geothermal gradient from the base of gas hydrate stability zone in the Andaman Forearc Basin
19
作者 Uma Shankar 《Energy Geoscience》 EI 2024年第2期314-320,共7页
Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t... Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps. 展开更多
关键词 gas hydrate BSR Geothermal gradient 3D and 2D topographic modeling Andaman Forearc Basin
下载PDF
The Cloud Model for Climate Change
20
作者 Michael Nelson David B. Nelson 《International Journal of Geosciences》 CAS 2024年第5期366-395,共30页
In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model... In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably. 展开更多
关键词 Climate Change Greenhouse gas CO2 CLOUDS model THERMODYNAMICS
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部