Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin...Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.展开更多
This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large mode...This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.展开更多
In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing...In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing.展开更多
Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep...Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep subsurface to shallow aquifers.The stray gas can dissolve in groundwater leading to chemical and biological reactions,which could negatively affect groundwater quality and contribute to atmospheric emissions.The knowledge oflight hydrocarbon solubility in the aqueous environment is essential for the numerical modelling offlow and transport in the subsurface.Herein,we compiled a database containing 2129experimental data of methane,ethane,and propane solubility in pure water and various electrolyte solutions over wide ranges of operating temperature and pressure.Two machine learning algorithms,namely regression tree(RT)and boosted regression tree(BRT)tuned with a Bayesian optimization algorithm(BO)were employed to determine the solubility of gases.The predictions were compared with the experimental data as well as four well-established thermodynamic models.Our analysis shows that the BRT-BO is sufficiently accurate,and the predicted values agree well with those obtained from the thermodynamic models.The coefficient of determination(R2)between experimental and predicted values is 0.99 and the mean squared error(MSE)is 9.97×10^(-8).The leverage statistical approach further confirmed the validity of the model developed.展开更多
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an...In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation.展开更多
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to...Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling.展开更多
Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is d...Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future.展开更多
Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hiera...Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.展开更多
This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The re...This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”.展开更多
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)...In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..展开更多
The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or inter...The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization models that are transformed from the above multiobjective model based on three allocation rules and the demand of shippers.Next, peak-shaving capacities, which are daily oversupply or overdelivery amounts at inlets or deliveries,are calculated with two-stage transient optimization models. Considering the hydraulic process of a pipeline network and operating schemes of compressor stations, all the above models are mixed-integer nonlinear programming problems. Finally, a case study is made to demonstrate the ability of the models.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the ...At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the production parameters of shale gas wells in comparison to conventional gas wells.In order to mitigate this issue,in the present work,a model is proposed to loosely couple the dynamics of gas inflow into shale gas wells with the dynamics of the liquid inflow.Starting from the flow law that accounts for the four stages of movement of the plunger,a dynamic model of the plunger lift based on the real wellbore trajectory is introduced.The model is then tested against 5 example wells,and it is shown that the accuracy level is higher than 90%.The well‘switch’,optimized on the basis of simulations based on such a model,is tested through on-site experiments.It is shown that,compared with the original switch configuration,the average production of the sample well can be increased by about 15%.展开更多
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined q...The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.展开更多
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using l...Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.展开更多
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f...Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance.展开更多
The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is describe...The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is described by using the electromagnetic particle-in-cell-Monte Carlo collision(PIC-MCC) model. The process of desorption of gas and its influence on the breakdown characteristics are studied. The simulation results show that, due to the accumulation of desorbed gas, the pressure near the dielectric surface increases in time, and the breakdown mechanism transitions from secondary electron multipactor to collision ionization. More and more electrons generated by collision ionization drift to the dielectric surface, so that the amplitude of self-organized normal electric field increases in time and sometimes points to the dielectric surface. Nevertheless, the number of secondary electrons emitted in each microwave cycle is approximately equal to the number of primary electrons. In the early and middle stages of breakdown, the attenuation of the microwave electric field near the dielectric surface is very small. However, the collision ionization causes a sharp increase in the number density of electrons,and the microwave electric field decays rapidly in the later stage of breakdown. Compared with the electromagnetic PIC-MCC simulation results, the mean energy and number of electrons obtained by the electrostatic PIC-MCC model are overestimated in the later stage of breakdown because it does not take into account the attenuation of microwave electric field. The pressure of the desorbed gas predicted by the electromagnetic PIC-MCC model is close to the measured value,when the number of gas atoms desorbed by an incident electron is taken as 0.4.展开更多
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
基金jointly supported by the Science and Technology Department of Shanxi Province,China (20201101003)the National Natural Science Foundation of China (U1810201)the China Scholarship Council (202206400012)。
文摘Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.
基金Supported by the National Natural Science Foundation of China(72088101,42372175)PetroChina Science and Technology Innovation Fund Program(2021DQ02-0904)。
文摘This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.
基金National Natural Science Foundation of China (Grant No. U2141246)。
文摘In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing.
文摘Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep subsurface to shallow aquifers.The stray gas can dissolve in groundwater leading to chemical and biological reactions,which could negatively affect groundwater quality and contribute to atmospheric emissions.The knowledge oflight hydrocarbon solubility in the aqueous environment is essential for the numerical modelling offlow and transport in the subsurface.Herein,we compiled a database containing 2129experimental data of methane,ethane,and propane solubility in pure water and various electrolyte solutions over wide ranges of operating temperature and pressure.Two machine learning algorithms,namely regression tree(RT)and boosted regression tree(BRT)tuned with a Bayesian optimization algorithm(BO)were employed to determine the solubility of gases.The predictions were compared with the experimental data as well as four well-established thermodynamic models.Our analysis shows that the BRT-BO is sufficiently accurate,and the predicted values agree well with those obtained from the thermodynamic models.The coefficient of determination(R2)between experimental and predicted values is 0.99 and the mean squared error(MSE)is 9.97×10^(-8).The leverage statistical approach further confirmed the validity of the model developed.
基金supported by the National Natural Science Foundation of China(62373017,62073006)and the Beijing Natural Science Foundation of China(4212032)。
文摘In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation.
基金funded by National Natural Science Foundation of China(52004238)China Postdoctoral Science Foundation(2019M663561).
文摘Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling.
基金Supported by the National Natural Science Foundation of China (41872128)the CNPC Major Science and Technology Project (2021DJ0101)。
文摘Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future.
基金supported by the National Key Research and Development Program of China (2017YFB0601805)。
文摘Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.
基金The National Natural Science Foundation of China under contract No.91528303the National Science and Technology Major Project under contract No.2016ZX05026-004the CNOOC Basic Geology and Exploration Strategy of Natural Gas in the South China Sea under contract No.2021-KT-YXKY-05。
文摘This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”.
基金supported by the National Natural Science Foundation of China(22078009)National Key Research and Development Program of China(2021YFC3001102,2021YFC3001100)。
文摘In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..
文摘The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization models that are transformed from the above multiobjective model based on three allocation rules and the demand of shippers.Next, peak-shaving capacities, which are daily oversupply or overdelivery amounts at inlets or deliveries,are calculated with two-stage transient optimization models. Considering the hydraulic process of a pipeline network and operating schemes of compressor stations, all the above models are mixed-integer nonlinear programming problems. Finally, a case study is made to demonstrate the ability of the models.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金The authors would like to acknowledge the National Natural Science Fund Project(62173049)for Key Projectthe Open Fund Project“Study on Transient Flow Mechanism of Fluid Accumulation in Shale Gas Wells”of the Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology.
文摘At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the production parameters of shale gas wells in comparison to conventional gas wells.In order to mitigate this issue,in the present work,a model is proposed to loosely couple the dynamics of gas inflow into shale gas wells with the dynamics of the liquid inflow.Starting from the flow law that accounts for the four stages of movement of the plunger,a dynamic model of the plunger lift based on the real wellbore trajectory is introduced.The model is then tested against 5 example wells,and it is shown that the accuracy level is higher than 90%.The well‘switch’,optimized on the basis of simulations based on such a model,is tested through on-site experiments.It is shown that,compared with the original switch configuration,the average production of the sample well can be increased by about 15%.
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
基金Supported by the National Natural Science Foundation of China(42302183,42272156,41922015)Sanya City Science and Technology Innovation Project(2022KJCX51).
文摘The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of SINOPEC.
文摘Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.
基金Supported by National Natural Science Foundation Joint Fund Project(U21B2071)National Natural Science Foundation of China(52174033)National Natural Science Youth Foundation of China(52304041).
文摘Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance.
基金supported by the National Key Laboratory Foundation 2021-JCJQ-LB-006,China(No.6142411132116)the Natural Science Basic Research Program of Shaanxi Province,China(Nos.2023-JC-YB-512 and 2023-JC-YB-042)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.ZYTS23075)the China Postdoctoral Science Foundation(No.2019M653545)。
文摘The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is described by using the electromagnetic particle-in-cell-Monte Carlo collision(PIC-MCC) model. The process of desorption of gas and its influence on the breakdown characteristics are studied. The simulation results show that, due to the accumulation of desorbed gas, the pressure near the dielectric surface increases in time, and the breakdown mechanism transitions from secondary electron multipactor to collision ionization. More and more electrons generated by collision ionization drift to the dielectric surface, so that the amplitude of self-organized normal electric field increases in time and sometimes points to the dielectric surface. Nevertheless, the number of secondary electrons emitted in each microwave cycle is approximately equal to the number of primary electrons. In the early and middle stages of breakdown, the attenuation of the microwave electric field near the dielectric surface is very small. However, the collision ionization causes a sharp increase in the number density of electrons,and the microwave electric field decays rapidly in the later stage of breakdown. Compared with the electromagnetic PIC-MCC simulation results, the mean energy and number of electrons obtained by the electrostatic PIC-MCC model are overestimated in the later stage of breakdown because it does not take into account the attenuation of microwave electric field. The pressure of the desorbed gas predicted by the electromagnetic PIC-MCC model is close to the measured value,when the number of gas atoms desorbed by an incident electron is taken as 0.4.
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.