传统的锂离子电池研究多注重本身相关机理以及储能能力的提高,而结构化电池不仅能够储能,且可以作为结构本身承受一定载荷.本文设计了一种新型结构化电池石墨负极板,通过修正准静态下石墨的力学指标得到对应高应变率下的压缩应力-应变...传统的锂离子电池研究多注重本身相关机理以及储能能力的提高,而结构化电池不仅能够储能,且可以作为结构本身承受一定载荷.本文设计了一种新型结构化电池石墨负极板,通过修正准静态下石墨的力学指标得到对应高应变率下的压缩应力-应变曲线、失效应变,采用数值分析方法对石墨负极板的承载能力进行了分析.同时,由于荷电状态(State of charge, SOC)会影响石墨的弹性模量、失效应变、厚度以及压缩应力-应变曲线等力学性能,因此在石墨的本构方程中考虑并修正了SOC产生的影响.通过有限元模拟了不同SOC下石墨负极板受到冲击后的响应,结果表明随着应变率或SOC增大,石墨负极板承载高速冲击的能力也随之降低.本文的研究成果可以为结构化电池负极的结构设计提供参考.展开更多
基金supported by the National Natural Science Foundation of China (No. U2033204)Engineering Laboratory of Battery Safety and Accident Control of Petroleum and Chemical Industry, China (No. ELBSAC202304)supported by Youth Innovation Promotion Association, Chinese Academy of Sciences (No. Y201768)
文摘传统的锂离子电池研究多注重本身相关机理以及储能能力的提高,而结构化电池不仅能够储能,且可以作为结构本身承受一定载荷.本文设计了一种新型结构化电池石墨负极板,通过修正准静态下石墨的力学指标得到对应高应变率下的压缩应力-应变曲线、失效应变,采用数值分析方法对石墨负极板的承载能力进行了分析.同时,由于荷电状态(State of charge, SOC)会影响石墨的弹性模量、失效应变、厚度以及压缩应力-应变曲线等力学性能,因此在石墨的本构方程中考虑并修正了SOC产生的影响.通过有限元模拟了不同SOC下石墨负极板受到冲击后的响应,结果表明随着应变率或SOC增大,石墨负极板承载高速冲击的能力也随之降低.本文的研究成果可以为结构化电池负极的结构设计提供参考.