Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression...A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.展开更多
This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the...This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.展开更多
At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accomm...At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network.展开更多
River Tapi is the prime water body for Surat city, Gujarat, India. On a long stretch of 22.39 km in Surat city (Kamrej to Causeway) of the Tapi river, there are many identified and non-identified discharge points avai...River Tapi is the prime water body for Surat city, Gujarat, India. On a long stretch of 22.39 km in Surat city (Kamrej to Causeway) of the Tapi river, there are many identified and non-identified discharge points available. Excessive discharge from these points restricts the efficiency of the self-purification process which ultimately degrades the river water quality. In this paper, an attempt has been made to estimate the pollutant load-carrying capacity at different segments of the river Tapi using the QUAL2Kw tool. The study has been undertaken with different scenarios: First, the QUAL2Kw model was trained with available river water quality and hydraulic data of the Tapi river in which the complete river segment was divided into 21 reaches. The model was calibrated and validated with the actual concentrations of the pollutants entering. In the second phase, all the point source, non-point source, and headwater characteristics were considered and the pollutant load-carrying capacity of the river in terms of BOD, ISS, and N-nitrate was found. In the third phase, all the sources of pollutants entering the river have been removed and only headwater characteristics were considered for the study. The results indicate that reach no. 21 (21.23ºN, 72.82ºE) has the maximum load-carrying capacity of Biochemical Oxygen Demand (BOD) up to 2057.7 kg/day, Inorganic Suspended Solids (ISS) up to 85633.8 kg/day, and Nitrate (NO<sub>3</sub>) up to 31688.8 kg/day. However, reach no. 4 has the minimum load carrying capacity of BOD up to 1088.1 kg/day, reach 8 carries a minimum of ISS 205341.6 kg/day and NO3 10215.57 kg/day.展开更多
Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an...Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.展开更多
The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The ...The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail. The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors, which are compared with published results. Ultimate limit states under combined loading are presented by failure envelopes, which are expressed in terms of dimensionless and normalized form in three-dimensional load space. The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.展开更多
For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously u...For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously under limited and non-linear high-power amplifier conditions.In this paper,different from the traditional link supportability designs aiming at minimizing the total transponder output power,a maximal sum Shannon capacity optimization objective is firstly raised subject to link supportability constraints.Furthermore,an efficient multilevel optimization(MO) algorithm is proposed to solve the considered optimization problem in the case of single link for each terminal.Moreover,in the case of multiple links for one terminal,an improved MO algorithm involving Golden section and discrete gradient searching procedures is proposed to optimize power allocation over all links.Finally,several numerical results are provided to demonstrate the effectiveness of our proposals.Comparison results show that,by the MO algorithm,not only all links' supportability can be guaranteed but also a larger sum capacity can be achieved with lower complexity.展开更多
Nutrient loads into water resources continues to be a major problem in Southern Africa. This has resulted in significant compromises in the ecological integrity of freshwater resources. The study aimed to assess the p...Nutrient loads into water resources continues to be a major problem in Southern Africa. This has resulted in significant compromises in the ecological integrity of freshwater resources. The study aimed to assess the pollution load into the Elands River in terms of nitrates and orthophosphates. These variables were compared against the Crocodile Catchment Interim Resource Quality Objectives to determine compliances or non-compliance of the Waterval Boven wastewater treatment plant. Generally upstream nitrate levels did not exceed the ideal limit of 0.5 mg·l-1 as indicated in the 2015 to 2016 samples where values ranged between 0.32 mg·l -1 and 0.27 mg·l-1, respectively. Similarly, observed upstream orthophosphates levels were below the ideal limit of 0.03 mg·l-1. However, downstream values of both nutrients exceeded the respective set limits. The nutrient load contribution from the sewage plant was characterised by a simple point-source model. Patterns of the loads into the river were demonstrated on a load duration curve based on the river which equalled or exceed 0.18 m3/s upstream and 1.31 m3/s downstream at 90% of the time. However, the flows were regarded as significantly low to deal with uncontrolled pollution loads. Most of the observed loads fell below the ideal limit of 0.05 mg·l-1 for nitrates both upstream and downstream of the sewage plant. For orthophosphates, most of the upstream loads were below the tolerable limit of 0.1 mg·l-1 whilst the downstream loads were exceeding the tolerable limits. The higher loads downstream in the river were attributed to the sewage discharge from the Waterval Boven wastewater treatment plant and the low river flows. Hence it could be concluded that river water quality should be interpreted based on the river flow regime in a given season.展开更多
The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyz...The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.展开更多
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for ...The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.展开更多
By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significan...By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significantly improved.Two kinds of strain hardening methods are often used for austenitic stainless steel pressure vessels:Avesta model for ambient temperature applications and Ardeform model for cryogenic temperature applications.Both methods are obtained from conventional design rules based on the linear elastic theory,and only consider the hardening effect from materials.Consequently this limits the applications of strain hardening techniques for austenitic stainless steel pressure vessels because of safety concerns.This paper investigates the effect of strain hardening on the load bearing capacity of austenitic stainless steel pressure vessels under large deformation,based on the elastic-plastic theory.Firstly,to understand the effect of strain hardening on material behavior,the plastic instability loads of a round tensile bar specimen are derived under two different loading paths and validated by experiments.Secondly,to investigate the effect of strain hardening on pressure vessels strength, the plastic instability pressure under strain hardening is derived and further validated by finite element simulations.Further,the safety margin of pressure vessels after strain hardening is analyzed by comparing the safety factor values calculated from bursting tests,finite element analyses,and standards.The researching results show that the load bearing capacity of pressure vessels at ambient temperature is independent of the loading history when the effects of both material strain hardening and structural deformation are considered.Finite element simulations and bursting tests results show that the minimum safety factor of austenitic stainless steel pressure vessels with 5% strain hardening is close to the recommended value for common pressure vessels specified in the European pressure vessel standard.The proposed study also shows that in the strain hardening design of austenitic stainless steel pressure vessels,the calculation for plastic instability pressure could use theoretical formula or finite element analyses based on geometrical dimensions and material property parameters before strain hardening,but a 5%strain should be employed as a design limit.The proposed research can be used for the strain hardening design of austenitic stainless steel pressure vessels safely.展开更多
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
A novel method for prediction of the load carrying capacity of a corroded reinforced concrete beam (CRCB) is presented in the paper. Nine reinforced concrete beams, which had been working in an aggressive environment ...A novel method for prediction of the load carrying capacity of a corroded reinforced concrete beam (CRCB) is presented in the paper. Nine reinforced concrete beams, which had been working in an aggressive environment for more than 10 years, were tested in the laboratory. Comprehensive tests, including flexural test, strength test for corroded concrete and rusty rebar, and pullout test for bond strength between concrete and rebar, were conducted. ne flexural test results of CRCBs reveal that the distribution of surface cracks on the beams shows a fractal behavior. The relationship between the fractal dimensions and mechanical properties of CRCBs is then studied. A prediction model based on artificial neural network (ANN) is established by the use of the fractal dimension as the corrosion index, together with the basic information of the beam. The validity of the prediction model is demonstrated through the experimental data, and satisfactory results are achieved.展开更多
The purpose of this study was to investigate how cyclic loading influenced the fracture toughness of hot-press lithium disilicate and zirconia core materials and whether there was an increase in the propensity for cro...The purpose of this study was to investigate how cyclic loading influenced the fracture toughness of hot-press lithium disilicate and zirconia core materials and whether there was an increase in the propensity for crown failure. Two types of all-ceramic crowns including the IPS e.max Press system (n=24) and the Lava zirconia system (n=24), were selected. Sectioned specimens were subjected to cyclic loading with the maximum magnitude of 200 N (R=0.1) until two million cycles. The material properties including Young's modulus (E) and hardness (H) and the fracture toughness (K,c) of the core materials were evaluated using indentation methods (n= 12 each). The load-bearing capacities of the specimens were examined by means of monotonic load to fracture (n=12 each). It was found that the material properties, including E, Hand Knc, of the two types of dental ceramics, were reduced. Statistical analysis indicated that there were no significant influences of fatigue loading on material properties E and H for both types of dental ceramics or Kgc for zirconia, while for the IPS e.max Press core, K,c, which was parallel to the direction of the lithium disilicate crystals, was significantly reduced (P-0.001). A conclusion was drawn that zirconia possesses high mechanical reliability and sustainable capacity to resist fatigue loading, while fatigue loading remarkably degraded the anisotropic mechanical behaviour of hot-press lithium disilicate ceramics.展开更多
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s...The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formul...Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formula of film stiffness, film thickness and carrying capacity were established; the influence of the main parameters, such as load, load area and deformation on the supportability was analyzed; and the capacity of the two kinds of bearings was compared. The result shows that the carrying capacity of typeⅠ is prior to that of type Ⅱ . Calculations provide a theoretical basis for the bearing choosing and structure designing in the actual project.展开更多
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
基金financially supported by the National Natural Science Foundation of China(Grant No.52171285)。
文摘A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.
基金This work was financially supported by the National Key Research and Development Program of China(No.2022YFC2903804)the National Natural Science Foundation of China(Nos.52004054,52274115,51874068 and 52074062).
文摘This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.
基金supported by the Science and Technology Project of Zhangjiakou Power Supply Company of State Grid Jibei Co.,Ltd.(SGJBZJ00YJJS2001096).
文摘At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network.
文摘River Tapi is the prime water body for Surat city, Gujarat, India. On a long stretch of 22.39 km in Surat city (Kamrej to Causeway) of the Tapi river, there are many identified and non-identified discharge points available. Excessive discharge from these points restricts the efficiency of the self-purification process which ultimately degrades the river water quality. In this paper, an attempt has been made to estimate the pollutant load-carrying capacity at different segments of the river Tapi using the QUAL2Kw tool. The study has been undertaken with different scenarios: First, the QUAL2Kw model was trained with available river water quality and hydraulic data of the Tapi river in which the complete river segment was divided into 21 reaches. The model was calibrated and validated with the actual concentrations of the pollutants entering. In the second phase, all the point source, non-point source, and headwater characteristics were considered and the pollutant load-carrying capacity of the river in terms of BOD, ISS, and N-nitrate was found. In the third phase, all the sources of pollutants entering the river have been removed and only headwater characteristics were considered for the study. The results indicate that reach no. 21 (21.23ºN, 72.82ºE) has the maximum load-carrying capacity of Biochemical Oxygen Demand (BOD) up to 2057.7 kg/day, Inorganic Suspended Solids (ISS) up to 85633.8 kg/day, and Nitrate (NO<sub>3</sub>) up to 31688.8 kg/day. However, reach no. 4 has the minimum load carrying capacity of BOD up to 1088.1 kg/day, reach 8 carries a minimum of ISS 205341.6 kg/day and NO3 10215.57 kg/day.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.
基金supported by the National Natural Science Foundation of China(Grant No. 50779061)
文摘The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail. The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors, which are compared with published results. Ultimate limit states under combined loading are presented by failure envelopes, which are expressed in terms of dimensionless and normalized form in three-dimensional load space. The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.
基金supportedin part by Natural Science Foundation under grant No.91338108,91438206Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously under limited and non-linear high-power amplifier conditions.In this paper,different from the traditional link supportability designs aiming at minimizing the total transponder output power,a maximal sum Shannon capacity optimization objective is firstly raised subject to link supportability constraints.Furthermore,an efficient multilevel optimization(MO) algorithm is proposed to solve the considered optimization problem in the case of single link for each terminal.Moreover,in the case of multiple links for one terminal,an improved MO algorithm involving Golden section and discrete gradient searching procedures is proposed to optimize power allocation over all links.Finally,several numerical results are provided to demonstrate the effectiveness of our proposals.Comparison results show that,by the MO algorithm,not only all links' supportability can be guaranteed but also a larger sum capacity can be achieved with lower complexity.
文摘Nutrient loads into water resources continues to be a major problem in Southern Africa. This has resulted in significant compromises in the ecological integrity of freshwater resources. The study aimed to assess the pollution load into the Elands River in terms of nitrates and orthophosphates. These variables were compared against the Crocodile Catchment Interim Resource Quality Objectives to determine compliances or non-compliance of the Waterval Boven wastewater treatment plant. Generally upstream nitrate levels did not exceed the ideal limit of 0.5 mg·l-1 as indicated in the 2015 to 2016 samples where values ranged between 0.32 mg·l -1 and 0.27 mg·l-1, respectively. Similarly, observed upstream orthophosphates levels were below the ideal limit of 0.03 mg·l-1. However, downstream values of both nutrients exceeded the respective set limits. The nutrient load contribution from the sewage plant was characterised by a simple point-source model. Patterns of the loads into the river were demonstrated on a load duration curve based on the river which equalled or exceed 0.18 m3/s upstream and 1.31 m3/s downstream at 90% of the time. However, the flows were regarded as significantly low to deal with uncontrolled pollution loads. Most of the observed loads fell below the ideal limit of 0.05 mg·l-1 for nitrates both upstream and downstream of the sewage plant. For orthophosphates, most of the upstream loads were below the tolerable limit of 0.1 mg·l-1 whilst the downstream loads were exceeding the tolerable limits. The higher loads downstream in the river were attributed to the sewage discharge from the Waterval Boven wastewater treatment plant and the low river flows. Hence it could be concluded that river water quality should be interpreted based on the river flow regime in a given season.
基金the National Natural Science Foundation of China,the China Postdoctoral Science Special Foundation,UTC Exploration Project,the Harbin City Science and Technology Projects
基金Supported by Ministry of Metallurgical Industry of China
文摘The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.
基金This project was financially supported by the National Natural Science Foundation of China(No.59679018)
文摘The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.
基金supported by National Key Technology R&D Program of China under the 11th Five-year(Grant No.2006BAK02B02),and China Special Equipment Science & Technology Cooperation Platform
文摘By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significantly improved.Two kinds of strain hardening methods are often used for austenitic stainless steel pressure vessels:Avesta model for ambient temperature applications and Ardeform model for cryogenic temperature applications.Both methods are obtained from conventional design rules based on the linear elastic theory,and only consider the hardening effect from materials.Consequently this limits the applications of strain hardening techniques for austenitic stainless steel pressure vessels because of safety concerns.This paper investigates the effect of strain hardening on the load bearing capacity of austenitic stainless steel pressure vessels under large deformation,based on the elastic-plastic theory.Firstly,to understand the effect of strain hardening on material behavior,the plastic instability loads of a round tensile bar specimen are derived under two different loading paths and validated by experiments.Secondly,to investigate the effect of strain hardening on pressure vessels strength, the plastic instability pressure under strain hardening is derived and further validated by finite element simulations.Further,the safety margin of pressure vessels after strain hardening is analyzed by comparing the safety factor values calculated from bursting tests,finite element analyses,and standards.The researching results show that the load bearing capacity of pressure vessels at ambient temperature is independent of the loading history when the effects of both material strain hardening and structural deformation are considered.Finite element simulations and bursting tests results show that the minimum safety factor of austenitic stainless steel pressure vessels with 5% strain hardening is close to the recommended value for common pressure vessels specified in the European pressure vessel standard.The proposed study also shows that in the strain hardening design of austenitic stainless steel pressure vessels,the calculation for plastic instability pressure could use theoretical formula or finite element analyses based on geometrical dimensions and material property parameters before strain hardening,but a 5%strain should be employed as a design limit.The proposed research can be used for the strain hardening design of austenitic stainless steel pressure vessels safely.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.
文摘A novel method for prediction of the load carrying capacity of a corroded reinforced concrete beam (CRCB) is presented in the paper. Nine reinforced concrete beams, which had been working in an aggressive environment for more than 10 years, were tested in the laboratory. Comprehensive tests, including flexural test, strength test for corroded concrete and rusty rebar, and pullout test for bond strength between concrete and rebar, were conducted. ne flexural test results of CRCBs reveal that the distribution of surface cracks on the beams shows a fractal behavior. The relationship between the fractal dimensions and mechanical properties of CRCBs is then studied. A prediction model based on artificial neural network (ANN) is established by the use of the fractal dimension as the corrosion index, together with the basic information of the beam. The validity of the prediction model is demonstrated through the experimental data, and satisfactory results are achieved.
基金supported by the National Science Foundation of China(Grant No.11172161)the Science and Technology Commission of Shanghai Municipality(Grant No.10zr1423400)+3 种基金the Innovation Program of the Shanghai Municipal Education Commission(No.12ZZ092)the State Key Laboratory of Oral Diseases(Sichuan University)(GrantSKLODSCU2009KF03)the Shanghai Leading Academic Discipline Project(No.S30106)Instrumental Analysis and Research Centre at Shanghai University
文摘The purpose of this study was to investigate how cyclic loading influenced the fracture toughness of hot-press lithium disilicate and zirconia core materials and whether there was an increase in the propensity for crown failure. Two types of all-ceramic crowns including the IPS e.max Press system (n=24) and the Lava zirconia system (n=24), were selected. Sectioned specimens were subjected to cyclic loading with the maximum magnitude of 200 N (R=0.1) until two million cycles. The material properties including Young's modulus (E) and hardness (H) and the fracture toughness (K,c) of the core materials were evaluated using indentation methods (n= 12 each). The load-bearing capacities of the specimens were examined by means of monotonic load to fracture (n=12 each). It was found that the material properties, including E, Hand Knc, of the two types of dental ceramics, were reduced. Statistical analysis indicated that there were no significant influences of fatigue loading on material properties E and H for both types of dental ceramics or Kgc for zirconia, while for the IPS e.max Press core, K,c, which was parallel to the direction of the lithium disilicate crystals, was significantly reduced (P-0.001). A conclusion was drawn that zirconia possesses high mechanical reliability and sustainable capacity to resist fatigue loading, while fatigue loading remarkably degraded the anisotropic mechanical behaviour of hot-press lithium disilicate ceramics.
文摘The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
基金Project(zjg0702-01) supported by the Key Program of Natural Science Foundation of Heilongjiang Province, ChinaProject(20050214001) supported by the Doctoral Fund of Ministry of Education of China+1 种基金Project(11531051) supported by the Science and Technology Foundation of Heilongjiang Provincial Education Department, ChinaProject(QC08c88) supported by Heilongjiang Province Foundation for Youths, China.
文摘Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formula of film stiffness, film thickness and carrying capacity were established; the influence of the main parameters, such as load, load area and deformation on the supportability was analyzed; and the capacity of the two kinds of bearings was compared. The result shows that the carrying capacity of typeⅠ is prior to that of type Ⅱ . Calculations provide a theoretical basis for the bearing choosing and structure designing in the actual project.