Biomass as a sustainable and renewable energy source is starting to gain momentum, especially as more economical energy extraction methods prevail. SCWBG (supercritical water biomass gasification) is one of the more...Biomass as a sustainable and renewable energy source is starting to gain momentum, especially as more economical energy extraction methods prevail. SCWBG (supercritical water biomass gasification) is one of the more promising methods to extract energy from biomass in a gaseous form due to its lower temperature and simpler setup. In this work, two biomass and two bio-waste samples are gasified in SCW (supercritical water) under two temperatures (hence water densities). As temperature increases and water density decreases, combustible gas yields tend to increase due to changes in reaction pathways and reaction rates. An analytical comparison is also made between the four different types of biomass in terms of the combustible gases produced and hence the energy value. As a result of this analysis beet skin produces the most methane and corn silage yields the most hydrogen. The two bio-waste samples (straw and beet skin) are found to have the highest HHV (higher heating values).展开更多
文摘Biomass as a sustainable and renewable energy source is starting to gain momentum, especially as more economical energy extraction methods prevail. SCWBG (supercritical water biomass gasification) is one of the more promising methods to extract energy from biomass in a gaseous form due to its lower temperature and simpler setup. In this work, two biomass and two bio-waste samples are gasified in SCW (supercritical water) under two temperatures (hence water densities). As temperature increases and water density decreases, combustible gas yields tend to increase due to changes in reaction pathways and reaction rates. An analytical comparison is also made between the four different types of biomass in terms of the combustible gases produced and hence the energy value. As a result of this analysis beet skin produces the most methane and corn silage yields the most hydrogen. The two bio-waste samples (straw and beet skin) are found to have the highest HHV (higher heating values).