BACKGROUND Cholangiocarcinoma(CCA)is a lethal malignancy with limited treatment options and poor prognosis.The PEA3 subfamily of E26 transformation specific genes:ETV1,ETV4,and ETV5 are known to play significant roles...BACKGROUND Cholangiocarcinoma(CCA)is a lethal malignancy with limited treatment options and poor prognosis.The PEA3 subfamily of E26 transformation specific genes:ETV1,ETV4,and ETV5 are known to play significant roles in various cancers by influencing cell proliferation,invasion,and metastasis.AIM To analyze PEA3 subfamily gene expression levels in CCA and their correlation with clinical parameters to determine their prognostic value for CCA.METHODS The expression levels of PEA3 subfamily genes in pan-cancer and CCA data in the cancer genome atlas and genotype-tissue expression project databases were analyzed with R language software.Survival curve and receiver operating characteristic analyses were performed using the SurvMiner,Survival,and Procr language packages.The gene expression profiling interactive analysis 2.0 database was used to analyze the expression levels of PEA3 subfamily genes in different subtypes and stages of CCA.Web Gestalt was used to perform the gene ontology/Kyoto encyclopedia of genes and genomes(GO/KEGG)analysis,and STRING database analysis was used to determine the genes and proteins related to PEA3 subfamily genes.RESULTS ETV1,ETV4,and ETV5 expression levels were significantly increased in CCA.There were significant differences in ETV1,ETV4,and ETV5 expression levels among the different subtypes of CCA,and predictive analysis revealed that only high ETV1 and ETV4 expression levels were significantly associated with shorter overall survival in patients with CCA.GO/KEGG analysis revealed that PEA3 subfamily genes were closely related to transcriptional misregulation in cancer.In vitro and in vivo experiments revealed that PEA3 silencing inhibited the invasion and metastasis of CCA cells.CONCLUSION The expression level of ETV4 may be a predictive biomarker of survival in patients with CCA.展开更多
The ATP-binding cassette(ABC)transporter is a gene superfamily in plants.ATP-binding cassette subfamily C(ABCC)protein is a multidrug resistance-associated(MRP)transporter.They play various roles in plant growth,devel...The ATP-binding cassette(ABC)transporter is a gene superfamily in plants.ATP-binding cassette subfamily C(ABCC)protein is a multidrug resistance-associated(MRP)transporter.They play various roles in plant growth,development,and secondary metabolite transport.However,there are few studies on ABCC transporters in tea plants.In this study,genome-wide association study(GWAS)analysis of epigallocatechin gallate(EGCG)content in 108 strains of Kingbird revealed that CsABCCs may be involved in EGCG transport.We identified 25 CsABCC genes at the genomic level of the tea plant,their phylogenetic tree,gene structure,targeted miRNA and other bioinformatics were analyzed.The expression patterns of CsABCCs in eight different tissues and abiotic stress indicate that they have potential roles in regulating the growth,development,and defense of tea plants.The correlation analysis revealed that the expression of the CsABCC11 gene was closely related to the EGCG content in tea buds of 108 strains of the Kingbird,and the subcellular localization experiments in tobacco showed that CsABCC11 protein was localized on the plasma membrane.The virus-induced gene silencing(VIGS)strategy in tea plants further verified that CsABCC11 was involved in EGCG accumulation.Our study laid a foundation for studying the biological function of CsABCC and provided a new candidate molecular marker gene for further EGCG-related variety breeding,which will be of great interest to breeders.展开更多
Upland cotton(Gossypium hirsutum L.)is the most important natural textile fiber crop worldwide.Plant height(PH)is a significant component of plant architecture,strongly influencing crop cultivation patterns,overall yi...Upland cotton(Gossypium hirsutum L.)is the most important natural textile fiber crop worldwide.Plant height(PH)is a significant component of plant architecture,strongly influencing crop cultivation patterns,overall yield,and economic coefficient.However,cotton genes regulating plant height have not been fully identified.Previously,an HD-Zip gene(GhHB12)was isolated and characterized in cotton,which regulates the abiotic and biotic stress responses and the growth and development processes.In this study,we showed that GhHB12 was induced by auxin.Moreover,overexpression of GhHB12 induces the expression of HY5,ATH1,and HAT4,represses the spatial-temporal distribution,polar transport,and signaling of auxin,alters the expression of genes involved in cell wall expansion,and restrains the plant height in cotton.These results suggest a role of GhHB12 in regulating cotton plant height,which could be achieved by affecting the auxin signaling and cell wall expansion.展开更多
基金Science and Technology Development Plan Project of Hangzhou,No.20201203B56.
文摘BACKGROUND Cholangiocarcinoma(CCA)is a lethal malignancy with limited treatment options and poor prognosis.The PEA3 subfamily of E26 transformation specific genes:ETV1,ETV4,and ETV5 are known to play significant roles in various cancers by influencing cell proliferation,invasion,and metastasis.AIM To analyze PEA3 subfamily gene expression levels in CCA and their correlation with clinical parameters to determine their prognostic value for CCA.METHODS The expression levels of PEA3 subfamily genes in pan-cancer and CCA data in the cancer genome atlas and genotype-tissue expression project databases were analyzed with R language software.Survival curve and receiver operating characteristic analyses were performed using the SurvMiner,Survival,and Procr language packages.The gene expression profiling interactive analysis 2.0 database was used to analyze the expression levels of PEA3 subfamily genes in different subtypes and stages of CCA.Web Gestalt was used to perform the gene ontology/Kyoto encyclopedia of genes and genomes(GO/KEGG)analysis,and STRING database analysis was used to determine the genes and proteins related to PEA3 subfamily genes.RESULTS ETV1,ETV4,and ETV5 expression levels were significantly increased in CCA.There were significant differences in ETV1,ETV4,and ETV5 expression levels among the different subtypes of CCA,and predictive analysis revealed that only high ETV1 and ETV4 expression levels were significantly associated with shorter overall survival in patients with CCA.GO/KEGG analysis revealed that PEA3 subfamily genes were closely related to transcriptional misregulation in cancer.In vitro and in vivo experiments revealed that PEA3 silencing inhibited the invasion and metastasis of CCA cells.CONCLUSION The expression level of ETV4 may be a predictive biomarker of survival in patients with CCA.
基金supported by the Guizhou University Talent Introduction Program([2021]05)Guizhou University Cultivation Program([2020]48)+2 种基金Institute of Technology of YF([2022]017)Guizhou Province High-Level Innovative Talents“Hundred”Level Talent Project(Qiankehe Platform Talent)GCC[2023]014Supported by the earmarked fund for GZMARS-Tea and Research on the Planting Technology of China HUANENG Photovoltaic Tea Garden(Project No.HNKJ2022-H135).
文摘The ATP-binding cassette(ABC)transporter is a gene superfamily in plants.ATP-binding cassette subfamily C(ABCC)protein is a multidrug resistance-associated(MRP)transporter.They play various roles in plant growth,development,and secondary metabolite transport.However,there are few studies on ABCC transporters in tea plants.In this study,genome-wide association study(GWAS)analysis of epigallocatechin gallate(EGCG)content in 108 strains of Kingbird revealed that CsABCCs may be involved in EGCG transport.We identified 25 CsABCC genes at the genomic level of the tea plant,their phylogenetic tree,gene structure,targeted miRNA and other bioinformatics were analyzed.The expression patterns of CsABCCs in eight different tissues and abiotic stress indicate that they have potential roles in regulating the growth,development,and defense of tea plants.The correlation analysis revealed that the expression of the CsABCC11 gene was closely related to the EGCG content in tea buds of 108 strains of the Kingbird,and the subcellular localization experiments in tobacco showed that CsABCC11 protein was localized on the plasma membrane.The virus-induced gene silencing(VIGS)strategy in tea plants further verified that CsABCC11 was involved in EGCG accumulation.Our study laid a foundation for studying the biological function of CsABCC and provided a new candidate molecular marker gene for further EGCG-related variety breeding,which will be of great interest to breeders.
基金supported by the Science and Technology Innovation Program of Hunan Province,China(2020RC2057).
文摘Upland cotton(Gossypium hirsutum L.)is the most important natural textile fiber crop worldwide.Plant height(PH)is a significant component of plant architecture,strongly influencing crop cultivation patterns,overall yield,and economic coefficient.However,cotton genes regulating plant height have not been fully identified.Previously,an HD-Zip gene(GhHB12)was isolated and characterized in cotton,which regulates the abiotic and biotic stress responses and the growth and development processes.In this study,we showed that GhHB12 was induced by auxin.Moreover,overexpression of GhHB12 induces the expression of HY5,ATH1,and HAT4,represses the spatial-temporal distribution,polar transport,and signaling of auxin,alters the expression of genes involved in cell wall expansion,and restrains the plant height in cotton.These results suggest a role of GhHB12 in regulating cotton plant height,which could be achieved by affecting the auxin signaling and cell wall expansion.