期刊文献+
共找到18,242篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved BP Algorithm and Its Application in Classification of Surface Defects of Steel Plate 被引量:4
1
作者 ZHAO Xiang-yang LAI Kang-sheng DAI Dong-ming 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期52-55,共4页
Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural net... Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate. 展开更多
关键词 artificial neural network MLP bp algorithm SVD generalized inverse matrix
下载PDF
Motion Control of Underwater Vehicle Based on Least Disturbance BP Algorithm 被引量:3
2
作者 LIU Xue-min, LIU Jian-cheng, XU Yu-ruCollege of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001 , China 《Journal of Marine Science and Application》 2002年第1期16-20,共5页
Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Thoug... Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Though it puts some questions over to design application structure with neural networks, it is really unknowable about the study mechanism of those. But, the importance of study ratio is widely realized by many scientists now, and some methods on the modification of that are provided. The main subject is how to improve the stability and how to increase the convergent rate of networks by defining a good form of the study ratio. Here a new algorithm named LDBP (least disturbance BP algorithm) is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an autonomous underwater vehicle designed by HEU. The experimental results show that the algorithm has good performance and the controller designed based on it is fine. 展开更多
关键词 bp algorithm of neural networks dynamic ratio least disturbance autonomous underwater vehicle
下载PDF
The tool for building an NN based on improved BP algorithm
3
作者 冯玉强 潘启澍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第3期312-316,共5页
Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and loc... Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and local least often make it difficult for the non experts to use it widely, and an improved BP (IBP) algorithm is therefore suggested to expedite the convergence speed. The algorithm can judge local least and take some steps automatically to jump out from the local least. Furthermore, this algorithm introduces the expert knowledge base. An IBP based agile and current neural network (NN) constructed tool is designed. An initial NN can be constructed automatically using an expert knowledge base. And an Aitken’s Δ 2 process method is used to expedite the convergent speed for NN. Besides, the method of changing the parameter of Sigmoid function and increasing the hidden node is used to bring surge for NN to jump out from the local 展开更多
关键词 neural network (NN) bp algorithm
下载PDF
Prediction of Low-Energy Building Energy Consumption Based on Genetic BP Algorithm
4
作者 Yanhua Lu Xuehui Gong Andrew Byron Kipnis 《Computers, Materials & Continua》 SCIE EI 2022年第9期5481-5497,共17页
Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by us... Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by using Back Propagation(BP)neural network to solve nonlinear problems and have the ability of global approximation and generalization.By analyzing the influence of different uses,different building surfaces and different energysaving schemes on the change of building energy consumption,the grey correlation method is used to determine the main influencing factors affecting each building energy consumption,including uses,building surfaces and energy-saving schemes,which are used as the input of the model and the building energy consumption as the output of the model,so as to establish the building energy consumption analysis model based on BP neural network.However,in practical application,BP neural network has the defects of slow convergence and easy to fall into local minima.In view of this,this paper uses genetic algorithm to optimize the weight and threshold of BP neural network,completes the improvement of various building energy consumption analysis models,and realizes the qualitative analysis of building energy consumption.The model verification results show that the viscosity of the building energy consumption analysis model based on genetic algorithm improved BP neural network algorithm(GABP)in this paper is relatively high,which is more accurate than the results of the traditional BP neural network model,and the relative error of the analysis model is reduced from 11.56%to 8.13%,which proves that the GABP can be better suitable for the study of school building energy consumption analysis model,It is applied to the prediction of building energy consumption,which lays a foundation for the realization of carbon neutralization in the South expansion plan of Yangtze University. 展开更多
关键词 Energy consumption analysis model bp neural network genetic algorithm
下载PDF
Circle BP Algorithm for MLP Neural Network 被引量:1
5
作者 CHEN Jianyong,CHEN Zhenxiang,LU Yingyang,XU Shenchu (Dept.of Physics,Xiamen University,Xiamen 361005,CHN) 《Semiconductor Photonics and Technology》 CAS 1998年第3期179-182,192,共5页
A simple new BP algorithm named circle BP algorithm is introduced.With this algorithm,local minimums can be completely got rid of and learning speed can improve dramatically.It can be easily designed into the circuitr... A simple new BP algorithm named circle BP algorithm is introduced.With this algorithm,local minimums can be completely got rid of and learning speed can improve dramatically.It can be easily designed into the circuitry and advance further the application of MLP neural network . 展开更多
关键词 Circle bp algorithm neural network XOR network
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
6
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
7
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent neural network(RNN) Whale Optimization algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
8
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
9
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
10
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
下载PDF
Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm 被引量:7
11
作者 Maohua Xiao Wei Zhang +2 位作者 Kai Wen Yue Zhu Yilidaer Yiliyasi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期252-261,共10页
In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.The... In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.Therefore,in this paper,firstly,Wavelet Packet Decomposition is used for feature extraction of vibration signals,which makes up for the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals,and different energy values in different frequency bands are obtained by Wavelet Packet Decomposition.The features are visualized by the K-Means clustering method,and the results show that the extracted energy features can accurately distinguish the different states of the bearing.Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algo-rithm is proposed to identify the bearing faults.Compared with the Particle Swarm Algorithm,Beetle Algorithm can quickly find the error extreme value,which greatly reduces the training time of the model.At last,two experiments are conducted,which show that the accuracy of the model can reach more than 95%,and the model has a certain anti-interference ability. 展开更多
关键词 Rolling bearing bp neural network Beetle algorithm Wavelet packet transform
下载PDF
An Image Encryption Algorithm Based on BP Neural Network and Hyperchaotic System 被引量:8
12
作者 Feifei Yang Jun Mou +1 位作者 Yinghong Cao Ran Chu 《China Communications》 SCIE CSCD 2020年第5期21-28,共8页
To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based... To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication. 展开更多
关键词 bp neural network fractional-order hyperchaotic system image encryption algorithm secure communication
下载PDF
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
13
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm bp neural network physical and mechanical parameters surrounding rock direct-back analysis
下载PDF
CNC Thermal Compensation Based on Mind Evolutionary Algorithm Optimized BP Neural Network 被引量:6
14
作者 Yuefang Zhao Xiaohong Ren +2 位作者 Yang Hu Jin Wang Xuemei Bao 《World Journal of Engineering and Technology》 2016年第1期38-44,共7页
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred... Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value. 展开更多
关键词 Thermal Errors Thermal Error Compensation Genetic algorithm Mind Evolutionary algorithm bp neural network
下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
15
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control bp neural network heating furnace
下载PDF
Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction 被引量:8
16
作者 YANG Yang LI Kai-yang 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第1期1-9,共9页
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines... The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%. 展开更多
关键词 bp algorithm GENETIC algorithm neural network STRUCTURE classification Protein SECONDARY STRUCTURE prediction
下载PDF
Research on BP Neural Network Algorithm Based on Quasi- Newton Method 被引量:3
17
作者 Lu Peixin 《International Journal of Technology Management》 2014年第7期71-74,共4页
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f... With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better. 展开更多
关键词 Newton method bp neural network improved algorithm
下载PDF
A Self-organization Mapping Neural Network Algorithm and Its Application to Identify Ecosystem Service Zones 被引量:16
18
作者 战金艳 史娜娜 +1 位作者 吴红 邓祥征 《Agricultural Science & Technology》 CAS 2009年第5期162-165,共4页
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A... The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers. 展开更多
关键词 neural network algorithm Ecosystem services Ecosystem service zones Sustainable ecosystem management
下载PDF
Evolving Neural Networks Using an Improved Genetic Algorithm 被引量:2
19
作者 温秀兰 宋爱国 +1 位作者 段江海 王一清 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期367-369,共3页
A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal gen... A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove... 展开更多
关键词 genetic algorithms neural network nonlinear forecasting
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
20
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部