期刊文献+
共找到522篇文章
< 1 2 27 >
每页显示 20 50 100
Graphite Nanoplatelets Composite Materials: Role of the Epoxy-System in the Thermal Conductivity
1
作者 Lurayni Diaz-Chacon Renaud Metz +5 位作者 Philippe Dieudonné Jean Louis Bantignies Said Tahir Mehrdad Hassanzadeh Eleida Sosa Reinaldo Atencio 《Journal of Materials Science and Chemical Engineering》 2015年第5期75-87,共13页
Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. In this research, epoxy nanocomposites with e... Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. In this research, epoxy nanocomposites with exfoliated graphite nanoplatelets are prepared and characterized. The chosen approach requires no surface treatment and no sophisticated equipments allowing one to produce composites on a pilot scale. A significant increase of the thermal conductivity with the increasing of the graphite fillers content is nevertheless observed on 4 mm thick specimens. Our results viewed in the latest scientific findings suggest that the choice of resin is an important parameter to move towards composite materials with high thermal conductivity. 展开更多
关键词 composite Epoxy-GnP thermal conductivity graphite NANOPLATELETS EXFOLIATED graphite
下载PDF
Characterization and Thermal Conductivity of Modified Graphite/Fatty Acid Eutectic/PMMA Form-Stable Phase Change Material 被引量:8
2
作者 孟多 WANG Lijiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期586-591,共6页
We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as suppor... We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as supportive matrix and modified graphite (MG) powders serving as the thermal conductance improver were blended by bulk- polymerization method. The composite PCMs with different MG mass fraction (2%, 5%, 7%, 10% and 15%) were characterized by FT-IR, SEM, DSC technique and mechanical tests. Thermal conductivities of the composites were measured by transient hot-wire method. The results indicate that MG powders have been successfully inserted into the CA-MA/PMMA matrix without any chemical reaction with each other. The MG/CA-MA/PMMA composites maintain good thermal storage performance while the thermal conductivity has been enhanced significantly. The composite PCM added with 15 wt% MG powders increases approximately as 195.9% in thermal conductivity. Moreover, the thermal conductivity improvement of the composite PCMs is also verified by the melting-freezing experiment, which is profitable for the heat transfer efficiency in latent heat thermal energy storage system. 展开更多
关键词 form-stable composite PCM fatty acid eutectic poly-methyl methacrylate modified graphite thermal conductivity
下载PDF
Enhanced Thermal Conductivity and Bending Strength of Graphite Flakes/aluminum Composites Via Graphite Surface Modification 被引量:3
3
作者 蒋大鹏 ZHU Xiaomin YU Jiakang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期9-15,共7页
The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase ... The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase may form at the interface in Ni-coated Gf/Al and uncoated Gf/Al composites, respectively, while the Al-Cu compound cannot be observed in Cu-coated Gf/Al composites. The Cu and Ni coatings enhance TC and the bending strength of the composites in the meantime. TC of Cu-coated Gf/Al composites reach 515 Wm^-1·K^-1 with 75 vol% Gf, which are higher than that of Ni-coated Gf/Al. Meanwhile, due to Al3 Ni at the interface, the bending strength of Ni-coated Gf/Al composites are far more than those of the uncoated and Cu-coated Gf/Al with the same content of Gf. The results indicate that metal-coated Gf can effectively improve the interfacial bonding between Gf and Al. 展开更多
关键词 graphite flakes/Al composites metal COATING thermal conductivity BENDING strength
下载PDF
Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering 被引量:1
4
作者 Hui Xu Jian-hao Chen +2 位作者 Shu-bin Ren Xin-bo He Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第4期459-471,共13页
Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase trans... Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites. 展开更多
关键词 copper matrix composites graphite flake nickel-phosphorus transition layer sintering behavior thermal conductivity
下载PDF
Non-Linear Effect of Volume Fraction of Inclusions on The Effective Thermal Conductivity of Composite Materials: A Modified Maxwell Model 被引量:1
5
作者 Sajjan Kumar R. S. Bhoopal +2 位作者 P. K. Sharma R. S. Beniwal Ramvir Singh 《Open Journal of Composite Materials》 2011年第1期10-18,共9页
In this paper, non-linear dependence of volume fraction of inclusions on the effective thermal conductivity of composite materials is investigated. Proposed approximation formula is based on the Maxwell’s equation, i... In this paper, non-linear dependence of volume fraction of inclusions on the effective thermal conductivity of composite materials is investigated. Proposed approximation formula is based on the Maxwell’s equation, in that a non-linear term dependent on the volume fraction of the inclusions and the ratio of the thermal conductivities of the polymer continuum and inclusions is introduced in place of the volume fraction of inclusions. The modified Maxwell’s equation is used to calculate effective thermal conductivity of several composite materials and agreed well with the earlier experimental results. A comparison of the proposed relation with different models has also been made. 展开更多
关键词 EFFECTIVE thermal conductivity Empirical CORRECTION TERM composite materials
下载PDF
Physical and Thermo-Mechanical Properties of Composite Materials Based on Raw Earth and Crushed Palm Leaf Fibers (Borassus aethiopum)
6
作者 Mouhamadou Nabi Kane Mapathe Ndiaye +1 位作者 Pape Moussa Touré Adama Dione 《Materials Sciences and Applications》 2024年第9期358-377,共20页
The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples... The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes. 展开更多
关键词 Raw Earth Palma Leaf Fibers Ecological composite materials PHYSICAL Thermo-Mechanical thermal conductivity thermal Effusivity
下载PDF
Phase analysis and thermal conductivity of in situ O′-sialon/β-Si_3N_4 composites 被引量:2
7
作者 Xiao-lei Li Xiao-liang Chen +2 位作者 Hui-ming Ji Xiao-hong Sun Ling-ge Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第8期757-761,共5页
Typical O'-sialon-based ceramics, with a formula of Si2-xAlxOl+xN2-x, where x was set as 0.25, were fabricated by in-situ synthesis Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were ad... Typical O'-sialon-based ceramics, with a formula of Si2-xAlxOl+xN2-x, where x was set as 0.25, were fabricated by in-situ synthesis Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25-0.30 MPa, and their rnicrostructure, phase content, and thermal conductivity were evaluated. The effects of O'-sialon and β-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O'-sialon-based ceramics decreased with the ratio of O'-sialon/β-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O'-sialon ceramics sintered at 1360℃ was 1.197 W.m-1.K-1. 展开更多
关键词 ceramic materials SINTERING phase composition thermal conductivity numerical calculation
下载PDF
Theoretical determination of thermal diffusivity of composite material 被引量:1
8
作者 ThomasKabayabaya FanYu XinxinZhang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期44-47,共4页
A very simple model based on the Quadrupole method was used in thetheoretical analysis of thermal diffusivity of composite materials of Cu-PVC, PVC-Cu-PVC, andCu-PVC-Cu. The use of MATLAB software with a return to rea... A very simple model based on the Quadrupole method was used in thetheoretical analysis of thermal diffusivity of composite materials of Cu-PVC, PVC-Cu-PVC, andCu-PVC-Cu. The use of MATLAB software with a return to real space using the Stehfest algorithm makesthe time of calculation very short. The thermal responses on the rear face of each consideredsample, which determine the thermal diffusivity were represented. A mathematical demonstration whichconfirmed the results was given. Thermal diffusivity determined from the rear face thermalresponses were compared with the results of the thermal diffusivity calculated by considering thecomposite materials to be homogeneous, and a discussion on the two kinds of results was provided. 展开更多
关键词 thermal diffusivity composite material thermal conductivity HEATCONDUCTION quadrupole method
下载PDF
Research of Mechanical and Thermal Properties of Composite Material Based on Gypsum and Straw 被引量:1
9
作者 Nikola Vavřínová Kateřina Stejskalová +2 位作者 JiříTeslík Kateřina Kubenková JiříMajer 《Journal of Renewable Materials》 SCIE EI 2022年第7期1859-1873,共15页
This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards.This composite material is made of gypsum a... This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards.This composite material is made of gypsum and reinforcing natural fibers.The article verifies whether this natural reinforcement can improve the investigated properties compared to conventional plasters and gypsum plasterboards made of pure gypsum.From this composite material,high-strength plasterboards could then be produced,which meet the higher demands of users than conventional gypsum plasterboards.For their production,natural waste materials would be used efficiently.As part of the development of new building materials,it is necessary to specify essential characteristics for their later use in civil engineering.Crushed wheat straw and three gypsum classes with strengths G2(2 MPa)—gypsum Class I.,G5(5 MPa)—gypsum Class II.and G16(16 MPa)—gypsum Class III.were used to create the test samples.Samples were made with different ratios of the two ingredients,with the percentages of straw being 0%,2.5%,and 5%for each gypsum grade.The first part of the article describes how the increasing proportion of straw affects the composite’s mechanical properties(flexural strength and compressive strength).The second part of the article focuses on the change of thermal properties(thermal conductivity and specific heat capacity).The last part of the article mentions the verification of the fire properties(single-flame source fire test and gross heat of combustion)of this composite material.The research has shown that the increasing proportion of straw reinforcement caused a deterioration in the flexural strength(up to 56.49%in the 3.series of gypsum Class II.)and compressive strength(up to 80.27%in the 3.series of gypsum Class III.)and an improvement in the specific heat capacity and thermal conductivity(up to 31.40%in the 3.series).This composite material is thus not suitable for the production of high-strength plasterboards,but its reduced mechanical properties do not prevent its use for interior plasters.Based on the performed fire tests,it can be said that this composite material can be classified as a non-flammable material of reaction to fire Classes A1 or A2.From an ecological point of view,it is advantageous to use a composite material with a higher straw content. 展开更多
关键词 composite material GYPSUM PLASTERBOARD crushed straw flexural strength compressive strength thermal conductivity specific heat capacity ignitability gross heat of combustion
下载PDF
Investigation on the thermal conductivity of HDPE/MWCNT composites by laser pulse method 被引量:1
10
作者 CHEN XinGui HE GuanHu +2 位作者 DU JinHong PEI SongFeng GUO JingDong 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第9期2767-2772,共6页
Thermal conductivity (TC) of high density polyethylene/multiwall carbon nanotube (HDPE/MWCNT) composite films was measured by laser pulse method. It is found that the TC increased quickly with the increase of MWCNT fr... Thermal conductivity (TC) of high density polyethylene/multiwall carbon nanotube (HDPE/MWCNT) composite films was measured by laser pulse method. It is found that the TC increased quickly with the increase of MWCNT fraction when the volume fraction of MWCNT was below 3.35%. However,as the volume fraction of MWCNT was over 3.35%,the increasing rate became slow. A new percolation model was proposed based on the effect of MWCNT network to simulate the TC of HDPE/MWCNT composite films. The simulation result was in good agreement the experimental data well. In addition,the relationship of TC with the increase of temperature was also discussed. 展开更多
关键词 hdpe/MWCNT composite thermal conductivity PERCOLATION model
原文传递
Influence of graphite particle size and its shape on performance of carbon composite bipolar plate 被引量:1
11
作者 张杰 邹彦文 贺俊 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1080-1083,共4页
Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of g... Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction. 展开更多
关键词 Spherical graphite Fuel cell Bipolar plate Conductive composite materials
下载PDF
A new model for thermal conductivity of“continuous matrix/dispersed and separated 3D-particles”type composite materials and its application to WC-M(M=Co,Ag)systems 被引量:1
12
作者 Shiyi Wen Yong Du +4 位作者 Jing Tan Yuling Liu Peng Zhou Jianzhan Long George Kaptay 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第2期123-133,共11页
In the present work a new thermal conductivity model is developed for two-phase composite materials,which are consisted of a continuous matrix and dispersed 3 D-particles separated from each other by the matrix as a f... In the present work a new thermal conductivity model is developed for two-phase composite materials,which are consisted of a continuous matrix and dispersed 3 D-particles separated from each other by the matrix as a function of grain size and volume ratio of the dispersed particles at different temperatures.The model is applied to reproduce experimental thermal conductivity values of cemented carbide systems WC-Co and WC-Ag.Good agreement was found between measured thermal conductivity data originating from both this work and recent literature and the calculated ones only using semi-empirical parameters for the interfacial thermal resistance(ITR)values at WC/Co,WC/Ag and WC/WC interfaces as a function of temperature.Additionally,the temperature and grain size dependence of the thermal conductivity for WC is established for the first time.The model works well for the case when the matrix(Ag)has a higher thermal conductivity compared to that of the WC particles and also for the case when the matrix(Co)has a lower thermal conductivity compared to that of the WC particles.The new model forms a physically sound basis for further development/materials design of cemented carbides and particlereinforced composite materials. 展开更多
关键词 thermal conductivity WC-CO WC-Ag Modeling Cemented carbides composite materials
原文传递
Preparation and Thermal Properties of a Novel Modified Ammonium Alum/Expanded Graphite Composite Phase Change Material 被引量:1
13
作者 YIN Shaowu HAN Jiawei +3 位作者 ZHANG Chao KANG Peng TONG Lige WANG Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2093-2103,共11页
Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal... Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal energy storage(LTES)systems is hampered due to its high supercooling and low thermal conductivity.In this work,modified A-alum(M-PCM)containing different nucleating agents was prepared and further adsorbed in expanded graphite(EG)to obtain composite phase change material(CPCM)to overcome the disadvantages of A-alum.Thermal properties,thermal cycle stability,microstructure and chemical compatibility of CPCM were characterized by differential scanning calorimetry,thermal constant analysis,scanning electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy.The cold rewarming phenomenon of CPCM was established and explained.Results showed that the latent heat and melting point of CPCM were 187.22 J/g and 91.54℃,respectively.The supercooling of CPCM decreased by 9.61℃,and thermal conductivity increased by 27 times compared with pure A-alum.Heat storage and release tests indicated that 2 wt%calcium chloride dihydrate(CCD,CaCl_(2)·2H_(2)O)was the optimum nucleating agent for A-alum.The result of TG and 30 thermal cycles revealed that CPCM exhibited favorable thermal stability and reliability during the operating temperature.The prepared modified A-alum/EG CPCM has a promising application prospect for LTES. 展开更多
关键词 composite phase change material thermal property ammonium alum expanded graphite SUPERCOOLING thermal conductivity
原文传递
Effect of Graphite Layers on the Conformation and Thermal Conductivity of n-octadecane:A Molecular Dynamics Study 被引量:2
14
作者 ZHANG Tiantian XU Bo CHEN Zhenqian 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第5期1789-1802,共14页
To understand the thermal conductivity improvement of the paraffin and graphite composite PCMs in micro-scale,the conformation characteristics of molecules with rising temperature was studied by molecular dynamics(MD)... To understand the thermal conductivity improvement of the paraffin and graphite composite PCMs in micro-scale,the conformation characteristics of molecules with rising temperature was studied by molecular dynamics(MD)simulation.And then the structure and dynamics characteristics of the paraffin PCM,including the structural evolution,the self-diffusion coefficient,phase change properties and thermal conductivity,were analyzed.The results indicate that the distribution of the n-octadecane molecules is more regular in the region near the graphite layers,although the temperature is higher than the phase transition point,which means that the graphite layer has a significant absorption influence on the conformation of alkane molecules.Then,the self-diffusion coefficient of n-octadecane molecules increases with the increasing of temperature,which shows great agreement with the literature.Meanwhile,the self-diffusion coefficient of n-octadecane molecules staying far away from the graphite layers is larger than that of the molecules in the region near the graphite layer.In addition,the radial distribution function(RDF)was used to analyze the molecular interaction of the system at different temperatures.The sudden increase of R(ratio of the first peak value to the first valley value of the RDF)within the temperature range from 293 K to 313 K corresponds to the phase transition point,indicating that the solid-liquid phase transition occurs at the temperature range.Besides,the results indicate that the thermal conductivity of amorphous n-octadecane is about 2.5 times lower than that of the crystal n-octadecane with perfect structure.This investigation provides theoretical guidance for the study of the micro-mechanism of n-octadecane doped with graphite composite phase change materials. 展开更多
关键词 phase change materials self-diffusion coefficient graphite layers thermal conductivity molecular dynamics CONFORMATION
原文传递
Processing Compressed Expanded Natural Graphite for Phase Change Material Composites 被引量:1
15
作者 Alexander BULK Adewale ODUKOMAIYA +1 位作者 Ethan SIMMONS Jason WOODS 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1213-1226,共14页
Phase change materials(PCMs)are used in various thermal energy storage applications but are limited by their low thermal conductivity.One method to increase conductivity involves impregnating organic PCMs into highly ... Phase change materials(PCMs)are used in various thermal energy storage applications but are limited by their low thermal conductivity.One method to increase conductivity involves impregnating organic PCMs into highly porous conductive matrix materials.Of these materials,compressed expanded natural graphite(CENG)matrices have received the most attention.Despite this attention,the effect that CENG processing has on PCM saturation and overall matrix thermal conductivity has not been fully investigated.Therefore,the effect of the heat treatment process used to expand intercalated graphite flakes is evaluated here.Higher heat treatment temperatures yielded higher saturation rates and overall saturation at similar matrix porosities.For example,increasing temperature from 300℃to 700℃resulted in approximately 60%-70%increase in pore saturation after 100 minutes of soaking.The exposure time to heat treatment had less of an effect on PCM saturation.The exposure time had negligible effect above 30 min and above 500℃heating temperatures.However,because the expanded graphite was found to oxidize around 700℃,the use of longer exposure time in manufacturing applications can be beneficial if a shortened impregnation time is needed.Heat treatment conditions did not impact thermal conductivity.The composite latent heat of fusion was also reduced approximately proportionally to the PCM mass fraction.A local maximum in axial thermal conductivity was observed at around 83%porosity,which is similar to previous studies.The observed conductivity at this maximum was a factor of 81 times greater than the conductivity of the PCM. 展开更多
关键词 phase change materials thermal energy storage compressed expanded natural graphite thermal conductivity enhancement porous material sorptivity composite matrix
原文传递
竹叶/HDPE复合材料的制备及性能 被引量:2
16
作者 查瑶 饶俊 +2 位作者 关莹 张利萍 高慧 《浙江农林大学学报》 CAS CSCD 北大核心 2020年第2期343-349,共7页
【目的】探讨竹叶和高密度聚乙烯(HDPE)制备竹叶基复合材料的可行性,以提高竹叶的附加值,实现竹叶废弃物的综合利用。【方法】以经乙醇提取后的毛竹Phyllostachys edulis叶为原料,HDPE为增强基体,添加适量助剂,采用热压成型与注塑成型2... 【目的】探讨竹叶和高密度聚乙烯(HDPE)制备竹叶基复合材料的可行性,以提高竹叶的附加值,实现竹叶废弃物的综合利用。【方法】以经乙醇提取后的毛竹Phyllostachys edulis叶为原料,HDPE为增强基体,添加适量助剂,采用热压成型与注塑成型2种工艺制备竹叶/HDPE复合材料。利用傅里叶变换红外光谱(FTIR)、X射线衍射仪(XRD)、扫描电镜(SEM)、热重分析仪(TGA)进行结构与性能的表征,探究不同成型工艺下不同竹叶质量分数对复合材料的性能影响。【结果】热分析结果表明:2种工艺制备的竹叶/HDPE复合材料热稳定性均随着竹叶质量分数的增加而提高。力学性能结果表明:随竹叶质量分数增加,注塑成型竹叶/HDPE复合材料拉伸强度逐渐降低,抗拉模量逐渐增大;弯曲强度先增大后减小,当竹叶质量分数为40%时,热压成型和注塑成型复合材料弯曲强度均达到最大,分别为28.72和30.20 MPa。随竹叶质量分数增加,2种工艺制备的复合材料弯曲模量逐渐增大,最大值分别为1564.92和1696.15 MPa;冲击强度逐渐减小。【结论】相比而言,热压成型竹叶/HDPE复合材料热力学性能更加稳定,是具有一定应用前景的、环境友好的新型材料。 展开更多
关键词 材料学 竹叶 hdpe 复合材料 热性能 力学性能
下载PDF
HDPE/CB导电复合材料电-热平衡态电学行为 被引量:2
17
作者 宋义虎 潘颐 +2 位作者 陶小乐 郑强 益小苏 《功能高分子学报》 CAS CSCD 2000年第1期37-40,共4页
研究了HDPE/CB导电复合材料在不同环境温度下电 -热平衡态的电学行为 ,发现其电流密度 -电场强度 -电导率 (J-E-σ)关系曲线经临界点参量约化后可有效地重叠。根据自发热临界电流密度、电场强度以及电导率与材料线性电导率之间的标度关... 研究了HDPE/CB导电复合材料在不同环境温度下电 -热平衡态的电学行为 ,发现其电流密度 -电场强度 -电导率 (J-E-σ)关系曲线经临界点参量约化后可有效地重叠。根据自发热临界电流密度、电场强度以及电导率与材料线性电导率之间的标度关系 ,揭示了复合材料在不同温度下的导电机理的一致性及宏观电学行为与微观导电网络结构的相互关联性。 展开更多
关键词 导电复合材料 电-热平衡态 聚乙烯 炭黑
下载PDF
双连续相导热HDPE/PS/SiC复合材料的制备及性能研究 被引量:2
18
作者 卢虹 师雯 +3 位作者 周聪 张梓楠 游峰 刘仿军 《胶体与聚合物》 2021年第4期163-165,共3页
以碳化硅(SiC)或改性碳化硅(SMA-m-SiC)作为导热填料,高密度聚乙烯(HDPE)和聚苯乙烯(PS)为基体,制备HDPE/PS/Si C(SMA-m-SiC)复合材料,其中HDPE:PS=60:40,可形成明显的双连续结构。试验结果表明,在形成双连续结构的基础上,以SMA-m-Si C... 以碳化硅(SiC)或改性碳化硅(SMA-m-SiC)作为导热填料,高密度聚乙烯(HDPE)和聚苯乙烯(PS)为基体,制备HDPE/PS/Si C(SMA-m-SiC)复合材料,其中HDPE:PS=60:40,可形成明显的双连续结构。试验结果表明,在形成双连续结构的基础上,以SMA-m-Si C作为导热填料可以更好地改善聚合物基复合材料的导热性能和耐热性,且SMA-m-Si C含量为50 wt%时,复合材料的导热系数达到0.8109 W/m·k,提高30%,软化温度达到100.4℃。 展开更多
关键词 碳化硅 导热复合材料 导热填料 导热系数 双连续相
下载PDF
Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage 被引量:20
19
作者 Zhiwei Ge Feng Ye +3 位作者 Hui Cao Guanghui Leng Yue Qin Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期77-81,共5页
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and... This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites. 展开更多
关键词 thermal energy storage composite materials Microstructure thermal conductivity Phase change material
原文传递
Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications
20
作者 Rui ZHAO Weikai L +5 位作者 Tian WANG Ke ZHAN Zheng YANG Ya YAN Bin ZHAO Junhe YANG 《Frontiers of Materials Science》 SCIE CSCD 2020年第2期188-197,共10页
Effective thermal management of electronic integrated devices with high powder density has become a serious issue,which requires materials with high thermal conductivity(TC).In order to solve the problem of weak bondi... Effective thermal management of electronic integrated devices with high powder density has become a serious issue,which requires materials with high thermal conductivity(TC).In order to solve the problem of weak bonding between graphite and Cu,a novel Cu/graphite film/Cu sandwich composite(Cu/GF/Cu composite)with ultrahigh TC was fabricated by electro-deposition.The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electrodeposition.TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated.The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content,and the strong texture orientation of deposited Cu resulted in high TC.Under the optimizing preparing condition,the highest in-plane TC reached 824.3 W·m^-1·K^-1,while the ultimate tensile strength of this composite was about four times higher than that of the graphite film. 展开更多
关键词 metal matrix composites ELECTRO-DEPOSITION micro-riveting thermal conductivity graphite film
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部