Objective: To observe the effect of the artesunate (ART) on cellular proliferation in vitro, to search for the possible anti-tumor mechanism of ART on endometrial carcinoma at the molecular level and to provide the...Objective: To observe the effect of the artesunate (ART) on cellular proliferation in vitro, to search for the possible anti-tumor mechanism of ART on endometrial carcinoma at the molecular level and to provide the experimental and theoretical foundations for the clinical applications of ART. Methods: The cell proliferation was observed by microscope; MTT was used to examine the effects of ART on proliferation of HEC-1B cells, and flow cytometric analysis was used to detect cell cycle and apoptosis. The human endometrial carcinoma HEC-1B cells were conventionally cultured; ART was administered with a concentration of 40 μg/ml before the total RNA were extracted, mRNA expression of Survivin, Caspase-3, N-Cadherin, E-Cadherin, Fibronectinl and Cox-2 were detected using RT-PCR. Results: ART reduced proliferation in human endometrial carcinoma cell line HEC-1B in a dose- and time-dependent effect. The cells of G0/G1 stage were significantly increased (P〈0.05), but the cells of G2/M stages were significantly decreased (P〈0.05), so it has shown that the cell cycle was probably blocked in G0/G1 stage. After intervention with ART at 20 and 80 μg/ml for 48 h, cellular apoptosis rate respectively was (36.42±0.77)% and (11.77±0.58)%, and the difference was statistically significant compared with the control ([6.64±0.191%, P〈0.01). The expression of Cox-2 mRNA in the ART group was lower than those of control group, yet the expression of Caspase-3 and E-Cadherin mRNA in the ART group was higher than those of control group. Conclusion: ART can inhibit HEC-1B cell growth and proliferation in a dose- and time-dependent manner. Furthermore, ART can induce apoptosis in a dose-dependent manner. ART is able to downregulate Cox-2 mRNA expression and to upregulate E-Cadherin and Caspase-3 mRNA expression. So we can conclude that ART could induce the endometrial carcinoma HEC-1B cell apoptosis and inhibit tumor cell proliferation.展开更多
Although various anti-inflammatory medications,such as ephedrine,are employed to manage cough-variant asthma,their underlying mechanisms are yet to be fully understood.Recent studies suggest that exosomes derived from...Although various anti-inflammatory medications,such as ephedrine,are employed to manage cough-variant asthma,their underlying mechanisms are yet to be fully understood.Recent studies suggest that exosomes derived from airway epithelial cells(AECs)contain components like messenger RNAs(mRNAs),micro-RNAs(miRNAs),and long noncoding RNA(lncRNA),which play roles in the occurrence and progression of airway inflammation.This study investigates the influence of AEC-derived exosomes on the efficacy of ephedrine in treating cough-variant asthma.We established a mouse model of asthma and measured airway resist-ance and serum inflammatory cell levels.Real-time polymerase chain reaction(RT-qPCR),Western blotting,and enzyme-linked im-munosorbent assay(ELISA)analyses were used to assess gene and protein expression levels.Exosomes were isolated and character-ized.RNA immunoprecipitation(RIP)and RNA pull-down assays were conducted to examine the interaction between hnRNPA2B1 and lnc-TRPM2-AS1.In the ovalbumin(OVA)-challenged mouse model,ephedrine treatment reduced inflammatory responses,air-way resistance,and Th1/Th2 cell imbalance.Exosomes from OVA-treated AECs showed elevated levels of lnc-TRPM2-AS1,which were diminished following ephedrine treatment.The exosomal lnc-TRPM2-AS1 mediated the Th1/Th2 imbalance in CD4^(+)T cells,with its packaging into exosomes being facilitated by hnRNPA2B1.This study unveils a novel mechanism by which ephedrine ameli-orates OVA-induced CD4^(+)T cell imbalance by suppressing AEC-derived exosomal lnc-TRPM2-AS1.These findings could provide a theoretical framework for using ephedrine in asthma treatment.展开更多
Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely...Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely unexplored.In this study,microarray was leveraged for the first time to investigate the role of lncRNA in PT.We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT,and its overexpression endowed PT with high tumor grade and adverse prognosis.Furthermore,we elucidated that ZFPM2-AS1 promotes the proliferation,migration,and invasion of malignant PT in vitro.Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft(PDX)model could effectively inhibit tumor progression in vivo.Mechanistically,our findings showed that ZFPM2-AS1 is competitively bound to CDC42,inhibiting ACK1 and STAT1 activation,thereby launching the transcription of TNFRSF19.In conclusion,our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT,and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.展开更多
Targeting bromodomain-containing protein 4(BRD4) has been proved to be an effective strategy for cancer therapy.To date,numerous BRD4 inhibitors and degraders have been identified,some of which have advanced into clin...Targeting bromodomain-containing protein 4(BRD4) has been proved to be an effective strategy for cancer therapy.To date,numerous BRD4 inhibitors and degraders have been identified,some of which have advanced into clinical trials.In this work,a focused library of new [1,2,4]triazolo [1,5-a]pyrimidine derivatives were discovered to be able to inhibit BRD4.WS-722 inactivated BRD4(BD1/BD2),BRD2(BD1/BD2) and BRD3(BD1/BD2) broadly with the IC_(50) values less than 5 μmol/L.Besides,WS-722 inhibited growth of THP-1 cells with an IC_(50) value of 3.86 μmol/L.Like(+)-JQ1,WS-722 inhibited BRD4 in a reversible manner and enhanced protein stability.Docking studies showed that WS-722 occupied the central acetyl-lysine(Kac) binding cavity and formed a hydrogen bond with Asn140.In THP-1 cells,WS-722 showed target engagement to BRD4.Cellular effects of WS-722 on THP-1 cells were also examined,showing that WS-722 could block c-MYC expression,induce G0/G1 phase arrest and p21 up-regulation,and promote differentiation of THP-1 cells.BRD4 inhibition by WS-722 resulted in cell apoptosis and upregulated expression of cleaved caspased-3/7 and PARP in THP-1 cell lines.The [1,2,4]triazolo[1,5-a]pyrimidine is a new template for the development of new BRD4 inhibitors.展开更多
Photodynamic therapy(PDT)has shown great application potential in cancer treatment and the important manifestation of PDT in the inhibition of tumors is the activation of immunogenic cell death(ICD)effects.However,the...Photodynamic therapy(PDT)has shown great application potential in cancer treatment and the important manifestation of PDT in the inhibition of tumors is the activation of immunogenic cell death(ICD)effects.However,the strategy is limited in the innate hypoxic tumor microenvironment.There are two key elements for the realization of enhanced PDT:specific cellular uptake and release of the photosensitizer in the tumor,and a sufficient amount of oxygen to ensure photodynamic efficiency.Herein,self-oxygenated biomimetic nanoparticles(CS@M NPs)co-assembled by photosensitizer prodrug(Ce6-S-S-LA)and squalene(SQ)were engineered.In the treatment of triple negative breast cancer(TNBC),the oxygen carried by SQ can be converted to reactive oxygen species(ROS).Meanwhile,glutathione(GSH)consumption during transformation from Ce6-S-S-LA to chlorin e6(Ce6)avoided the depletion of ROS.The co-assembled(CS NPs)were encapsulated by homologous tumor cell membrane to improve the tumor targeting.The results showed that the ICD effect of CS@M NPs was confirmed by the significant release of calreticulin(CRT)and high mobility group protein B1(HMGB1),and it significantly activated the immune system by inhibiting the hypoxia inducible factor-1alpha(HIF-1α)-CD39-CD73-adenosine a2a receptor(A2AR)pathway,which not only promoted the maturation of dendritic cells(DC)and the presentation of tumor specific antigens,but also induced effective immune infiltration of tumors.Overall,the integrated nanoplatform implements the concept of multiple advantages of tumor targeting,reactive drug release,and synergistic photodynamic therapy-immunotherapy,which can achieve nearly 90%tumor suppression rate in orthotopic TNBC models.展开更多
文摘Objective: To observe the effect of the artesunate (ART) on cellular proliferation in vitro, to search for the possible anti-tumor mechanism of ART on endometrial carcinoma at the molecular level and to provide the experimental and theoretical foundations for the clinical applications of ART. Methods: The cell proliferation was observed by microscope; MTT was used to examine the effects of ART on proliferation of HEC-1B cells, and flow cytometric analysis was used to detect cell cycle and apoptosis. The human endometrial carcinoma HEC-1B cells were conventionally cultured; ART was administered with a concentration of 40 μg/ml before the total RNA were extracted, mRNA expression of Survivin, Caspase-3, N-Cadherin, E-Cadherin, Fibronectinl and Cox-2 were detected using RT-PCR. Results: ART reduced proliferation in human endometrial carcinoma cell line HEC-1B in a dose- and time-dependent effect. The cells of G0/G1 stage were significantly increased (P〈0.05), but the cells of G2/M stages were significantly decreased (P〈0.05), so it has shown that the cell cycle was probably blocked in G0/G1 stage. After intervention with ART at 20 and 80 μg/ml for 48 h, cellular apoptosis rate respectively was (36.42±0.77)% and (11.77±0.58)%, and the difference was statistically significant compared with the control ([6.64±0.191%, P〈0.01). The expression of Cox-2 mRNA in the ART group was lower than those of control group, yet the expression of Caspase-3 and E-Cadherin mRNA in the ART group was higher than those of control group. Conclusion: ART can inhibit HEC-1B cell growth and proliferation in a dose- and time-dependent manner. Furthermore, ART can induce apoptosis in a dose-dependent manner. ART is able to downregulate Cox-2 mRNA expression and to upregulate E-Cadherin and Caspase-3 mRNA expression. So we can conclude that ART could induce the endometrial carcinoma HEC-1B cell apoptosis and inhibit tumor cell proliferation.
基金supported by The Scientific Research Project of Traditional Chinese Medicine in Hunan Province(No.A2024027)The National Inheritance Studio of Distinguished Veteran TCM Experts(Letter of National Traditional Chinese Medicine Education[2022]No.75)Natural Science Foundation of Hunan Province(Nos.2021JJ40422,2023JJ60260).
文摘Although various anti-inflammatory medications,such as ephedrine,are employed to manage cough-variant asthma,their underlying mechanisms are yet to be fully understood.Recent studies suggest that exosomes derived from airway epithelial cells(AECs)contain components like messenger RNAs(mRNAs),micro-RNAs(miRNAs),and long noncoding RNA(lncRNA),which play roles in the occurrence and progression of airway inflammation.This study investigates the influence of AEC-derived exosomes on the efficacy of ephedrine in treating cough-variant asthma.We established a mouse model of asthma and measured airway resist-ance and serum inflammatory cell levels.Real-time polymerase chain reaction(RT-qPCR),Western blotting,and enzyme-linked im-munosorbent assay(ELISA)analyses were used to assess gene and protein expression levels.Exosomes were isolated and character-ized.RNA immunoprecipitation(RIP)and RNA pull-down assays were conducted to examine the interaction between hnRNPA2B1 and lnc-TRPM2-AS1.In the ovalbumin(OVA)-challenged mouse model,ephedrine treatment reduced inflammatory responses,air-way resistance,and Th1/Th2 cell imbalance.Exosomes from OVA-treated AECs showed elevated levels of lnc-TRPM2-AS1,which were diminished following ephedrine treatment.The exosomal lnc-TRPM2-AS1 mediated the Th1/Th2 imbalance in CD4^(+)T cells,with its packaging into exosomes being facilitated by hnRNPA2B1.This study unveils a novel mechanism by which ephedrine ameli-orates OVA-induced CD4^(+)T cell imbalance by suppressing AEC-derived exosomal lnc-TRPM2-AS1.These findings could provide a theoretical framework for using ephedrine in asthma treatment.
基金supported by the National Natural Science Foundation of China(82173054,82222029,82203085)the Guangdong Basic and Applied Basic Research Foundation(2022B1515020048,2022B1515020101,China)Guangzhou Science,Technology and Innovation Commission(202102010148,China).
文摘Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely unexplored.In this study,microarray was leveraged for the first time to investigate the role of lncRNA in PT.We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT,and its overexpression endowed PT with high tumor grade and adverse prognosis.Furthermore,we elucidated that ZFPM2-AS1 promotes the proliferation,migration,and invasion of malignant PT in vitro.Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft(PDX)model could effectively inhibit tumor progression in vivo.Mechanistically,our findings showed that ZFPM2-AS1 is competitively bound to CDC42,inhibiting ACK1 and STAT1 activation,thereby launching the transcription of TNFRSF19.In conclusion,our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT,and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.
基金supported by the National Natural Science Foundation of China(Nos.81703326,81773562,81602961 and 81430085)Scientific Program of Henan Province(No.182102310123)China Postdoctoral Science Foundation(Nos.2018M630840 and 2019T120641)。
文摘Targeting bromodomain-containing protein 4(BRD4) has been proved to be an effective strategy for cancer therapy.To date,numerous BRD4 inhibitors and degraders have been identified,some of which have advanced into clinical trials.In this work,a focused library of new [1,2,4]triazolo [1,5-a]pyrimidine derivatives were discovered to be able to inhibit BRD4.WS-722 inactivated BRD4(BD1/BD2),BRD2(BD1/BD2) and BRD3(BD1/BD2) broadly with the IC_(50) values less than 5 μmol/L.Besides,WS-722 inhibited growth of THP-1 cells with an IC_(50) value of 3.86 μmol/L.Like(+)-JQ1,WS-722 inhibited BRD4 in a reversible manner and enhanced protein stability.Docking studies showed that WS-722 occupied the central acetyl-lysine(Kac) binding cavity and formed a hydrogen bond with Asn140.In THP-1 cells,WS-722 showed target engagement to BRD4.Cellular effects of WS-722 on THP-1 cells were also examined,showing that WS-722 could block c-MYC expression,induce G0/G1 phase arrest and p21 up-regulation,and promote differentiation of THP-1 cells.BRD4 inhibition by WS-722 resulted in cell apoptosis and upregulated expression of cleaved caspased-3/7 and PARP in THP-1 cell lines.The [1,2,4]triazolo[1,5-a]pyrimidine is a new template for the development of new BRD4 inhibitors.
基金supported by the Guangdong Nature Resource Center(No.(2020)037)Natural Science Foundation of Guangdong Province(Nos.22019A1515011498 and 2019A1515011619)+2 种基金Basic and Applied Basic Research Foundation of Guangdong Province(No.2020B1515120063)National Natural Science Foundation of China(No.81803877)supported by the China Postdoctoral Science Foundation(No.2022M721535)。
文摘Photodynamic therapy(PDT)has shown great application potential in cancer treatment and the important manifestation of PDT in the inhibition of tumors is the activation of immunogenic cell death(ICD)effects.However,the strategy is limited in the innate hypoxic tumor microenvironment.There are two key elements for the realization of enhanced PDT:specific cellular uptake and release of the photosensitizer in the tumor,and a sufficient amount of oxygen to ensure photodynamic efficiency.Herein,self-oxygenated biomimetic nanoparticles(CS@M NPs)co-assembled by photosensitizer prodrug(Ce6-S-S-LA)and squalene(SQ)were engineered.In the treatment of triple negative breast cancer(TNBC),the oxygen carried by SQ can be converted to reactive oxygen species(ROS).Meanwhile,glutathione(GSH)consumption during transformation from Ce6-S-S-LA to chlorin e6(Ce6)avoided the depletion of ROS.The co-assembled(CS NPs)were encapsulated by homologous tumor cell membrane to improve the tumor targeting.The results showed that the ICD effect of CS@M NPs was confirmed by the significant release of calreticulin(CRT)and high mobility group protein B1(HMGB1),and it significantly activated the immune system by inhibiting the hypoxia inducible factor-1alpha(HIF-1α)-CD39-CD73-adenosine a2a receptor(A2AR)pathway,which not only promoted the maturation of dendritic cells(DC)and the presentation of tumor specific antigens,but also induced effective immune infiltration of tumors.Overall,the integrated nanoplatform implements the concept of multiple advantages of tumor targeting,reactive drug release,and synergistic photodynamic therapy-immunotherapy,which can achieve nearly 90%tumor suppression rate in orthotopic TNBC models.