期刊文献+
共找到2,716篇文章
< 1 2 136 >
每页显示 20 50 100
Integrated Hydrological Modeling of the Godavari River Basin in Maharashtra Using the SWAT Model: Streamflow Simulation and Analysis
1
作者 Pallavi Saraf Dattatray Gangaram Regulwar 《Journal of Water Resource and Protection》 CAS 2024年第1期17-26,共10页
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M... Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region. 展开更多
关键词 Soil and Water Assessment Tool (SWAT) Streamflow hydrological modeling RAINFALL RUNOFF
下载PDF
Hydrological Modeling of Upper OumErRabia Basin (Morocco), Comparative Study of the Event-Based and Continuous-Process HEC-HMS Model Methods
2
作者 Mohamed Msaddek George Kimbowa Abdelkader El Garouani 《Computational Water, Energy, and Environmental Engineering》 2020年第4期159-184,共26页
Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land exp... Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land expansion. Given Morocco’s per capita water availability, River-basin hydrologic </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> could potentially bring together agricultural, water resources </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> conservation objectives. However, not everywhere have hydrological models considered events and continuous assessment of climatic data. In this study, HEC-HMS </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> approach is used to explore the event-based and continuous-process simulation of land-use and </span><span style="font-family:Verdana;">land cover</span><span style="font-family:Verdana;"> change (LULCC) impact on water balance. The use of HEC-GeoHMS facilitated the digital data processing for coupling with the model. The basin’s physical characteristics and the hydro-climatic data helped to generate a geospatial database for </span><span style="font-family:Verdana;">HEC-HMS</span><span style="font-family:Verdana;"> model. We analyzed baseline and future scenario changes for the 1980-2016 period using the SCS Curve-Number and the Soil Moisture Accounting (SMA) loss methods. SMA was coupled with the Hargreaves evapotranspiration method. Model calibration focused on reproducing observed basin runoff hydrograph. To evaluate the model performance for both calibration and validation</span></span><span style="font-family:Verdana;">, </span><span style="font-family:""><span style="font-family:Verdana;">the Coefficient of determination (R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RSR) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Percent Bias (PBIAS) criteria were exploited. The average calibration NSE values were</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">0.740 and 0.585 for event-based (daily) and continuous-process (annual) respectively. The R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, RSR </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> PBIAS values were 0.624, 0.634 </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> +16.7 respectively. This is rated as good performance besides the validation simulations </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> satisfactory for subsequent hydrologic analyses. We conclude that the basin’s hydrologic response to positive and negative LULCC scenarios is significant </span><span style="font-family:Verdana;">both</span><span style="font-family:Verdana;"> positive and negative scenarios. The study findings provide useful information for key stakeholders/decision-makers in water resources. 展开更多
关键词 hec-hms model Land-Use and Land Cover Change Soil Moisture Accounting (SMA) Upper OumErRabia Watershed
下载PDF
Elucidating Dominant Factors Affecting Land Surface Hydrological Simulations of the Community Land Model over China 被引量:1
3
作者 Jianguo LIU Zong-Liang YANG +4 位作者 Binghao JIA Longhuan WANG Ping WANG Zhenghui XIE Chunxiang SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期235-250,共16页
In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent t... In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent the quality can be improved,a series of experiments with different LSMs,forcing datasets,and parameter datasets concerning soil texture and land cover were conducted.Six simulations are run for the Chinese mainland on 0.1°×0.1°grids from 1979 to 2008,and the simulated monthly soil moisture(SM),evapotranspiration(ET),and snow depth(SD)are then compared and assessed against observations.The results show that the meteorological forcing is the most important factor governing output.Beyond that,SM seems to be also very sensitive to soil texture information;SD is also very sensitive to snow parameterization scheme in the LSM.The Community Land Model version 4.5(CLM4.5),driven by newly developed observation-based regional meteorological forcing and land surface parameters(referred to as CMFD_CLM4.5_NEW),significantly improved the simulations in most cases over the Chinese mainland and its eight basins.It increased the correlation coefficient values from 0.46 to 0.54 for the SM modeling and from 0.54 to 0.67 for the SD simulations,and it decreased the root-mean-square error(RMSE)from 0.093 to 0.085 for the SM simulation and reduced the normalized RMSE from 1.277 to 0.201 for the SD simulations.This study indicates that the offline LSM simulation using a refined LSM driven by newly developed observation-based regional meteorological forcing and land surface parameters can better model reginal land surface hydrological processes. 展开更多
关键词 hydrological simulations land surface model meteorological forcing land surface parameters UNCERTAINTY
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
4
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
Rainfall-Runoff Modeling and Hydrological Responses to the Projected Climate Change for Upper Baro Basin, Ethiopia
5
作者 Teressa Negassa Muleta Knolmár Marcell 《American Journal of Climate Change》 2023年第2期219-243,共25页
This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-H... This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-HMS. The calibration and validation of the HEC-HMS model was done using the observed hydrometeorological data (1989-2018) and HEC-GeoHMS output data. The goodness-of-fit of the model was measured using three performance indices: Nash and Sutcliffe coefficient (NSE) = 0.8, Coefficient of Determination (R<sup>2</sup>) = 0.8, and Percent Difference (D) = 0.03, with values showing very good performance of the model. Finally, the optimized HEC-HMS model has been applied to simulate the hydrological responses of Upper Baro Basin to the projected climate change for mid-term (2040s) and long-term (2090s) A1B emission scenarios. The simulation results have shown a mean annual percent decrease of 3.6 and an increase of 8.1 for Baro River flow in the 2040s and 2090s scenarios, respectively, compared to the baseline period (2000s). A pronounced flow variation is rather observed on a seasonal basis, reaching a reduction of 50% in spring and an increase of 50% in autumn for both mid-term and long-term scenarios with respect to the base period. Generally, the rainfall-runoff model is developed to solve, in a complementary way, the two main problems in water resources management: the lack of gauged sites and future hydrological response to climate change data of the basin and the region in general. The study results imply that seasonal and time variation in the hydrologic cycle would most likely cause hydrologic extremes. And hence, the developed model and output data are of paramount importance for adaptive strategies and sustainable water resources development in the basin. 展开更多
关键词 Climate Change Flow Simulation hec-hms Rainfall-Runoff modeling Upper Baro Basin
下载PDF
Modelling Hydrological Consequences of Climate Change—Progress and Challenges 被引量:14
6
作者 Chong-yu XU Elin WIDEN Sven HALLDIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第6期789-797,共9页
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydr... The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change. 展开更多
关键词 climate change water-resources assessment water balance regional scale hydrological models review
下载PDF
Effect of calibration data series length on performance and optimal parameters of hydrological model 被引量:3
7
作者 Chuan-zhe LI Hao WANG +3 位作者 Jia LIU Deng-hua YAN Fu-liang YU Lu ZHANG 《Water Science and Engineering》 EI CAS 2010年第4期378-393,共16页
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ... In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates. 展开更多
关键词 calibration data series length model performance optimal parameter hydrological model data-limited catchment
下载PDF
Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow 被引量:2
8
作者 Sheng-tang Zhang Yin Liu +1 位作者 Miao-miao Li Bo Liang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期249-255,共7页
In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the... In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the effects of roughness on the volume and velocity of surface runoff, flood peaks, and the scouring capability of flows, but has not addressed the spatial variability of roughness in detail; the second type of research considers that surface roughness varies spatially with different land usage types, land-cover conditions, and different tillage forms, but lacks a quantitative study of the spatial variability; and the third type of research simply deals with the spatial variability of roughness in each grid cell or land type. We present three shortcomings of the current overland flow roughness research, including(1) the neglect of roughness in distributed hydrological models when simulating the overland flow direction and distribution,(2) the lack of consideration of spatial variability of roughness in hydrological models, and(3) the failure to distinguish the roughness formulas in different overland flow regimes. To solve these problems,distributed hydrological model research should focus on four aspects in regard to overland flow: velocity field observations, flow regime mechanisms, a basic roughness theory, and scale problems. 展开更多
关键词 DISTRIBUTED hydrological model Overland flow ROUGHNESS SPATIAL VARIABILITY
下载PDF
Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact 被引量:16
9
作者 Yun QIAN Teppei J.YASUNARI +7 位作者 Sarah J.DOHERTY Mark G.FLANNER William K.M.LAU MING Jing Hailong WANG Mo WANG Stephen G.WARREN Rudong ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第1期64-91,共28页
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric... Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle. 展开更多
关键词 light-absorbing aerosol snow ice albedo measurement climate modeling hydrological cycle
下载PDF
HEC-HMS模型和NAM模型在降雨径流模拟中的应用研究 被引量:1
10
作者 陆海田 朱立煌 倪晋 《中国防汛抗旱》 2023年第8期41-46,共6页
HEC-HMS(Hydrologic Engineering Center-Hydrologic Modeling System)模型是半分布式水文模型,NAM(Nedbør-Afstrømnings-Model)模型是集总式概念性模型,通过对两种模型计算原理和模型架构及参数组成进行对比,并选取滁河沙河... HEC-HMS(Hydrologic Engineering Center-Hydrologic Modeling System)模型是半分布式水文模型,NAM(Nedbør-Afstrømnings-Model)模型是集总式概念性模型,通过对两种模型计算原理和模型架构及参数组成进行对比,并选取滁河沙河集子流域的5场日径流进行模拟,通过模拟结果对两种模型在降雨径流模拟性能上进行比较研究。研究结果表明,两种模型均有较好的模拟效果,预报的径流深均在许可误差范围内。两种模型在降雨径流模拟过程中均存在一定的局限性,HEC-HMS模型计算功能强大,部分参数能直接反映流域的具体特性,但是其建模过程较繁琐,且内部的观测值难以进行检验,NAM建模过程简便,所需参数较少且物理意义明确,但是模型计算过程忽略了流域的空间变异及产流的空间分布。 展开更多
关键词 hec-hms模型 NAM模型 降雨径流 水文模拟 模型参数
下载PDF
Application of hydrological models in a snowmelt region of Aksu River Basin 被引量:1
11
作者 Ouyang Rulin Ren Liliang +1 位作者 Cheng Weiming Yu Zhongbo 《Water Science and Engineering》 EI CAS 2008年第4期1-13,共13页
This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. T... This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. Two hydrological models, the snowmelt-runoff model (SRM) and the Danish NedbФr-AfstrФmnings rainfall-runoff model (NAM), were used to simulate daily discharge processes in the Aksu River Basin. This study used the snow-covered area from MODIS remote sensing data as the SRM input. With the help of ArcGIS software, this study successfully derived the digital drainage network and elevation zones of the basin from digital elevation data. The simulation results showed that the SRM based on MODIS data was more accurate than NAM. This demonstrates that the application of remote sensing data to hydrological snowmelt models is a feasible and effective approach to runoff simulation and prediction in arid unguaged basins where snowmelt is a major runoff factor. 展开更多
关键词 hydrological model snowmelt-runoff model (SRM) Danish NedbФr-AfstrФmnings model (NAM) remote sensing runoff simulation and prediction snowmelt region unguaged basin Aksu River Basin
下载PDF
Developing a Framework to Measure Watershed Sustainability by Using Hydrological/Water Quality Model 被引量:1
12
作者 Aditya Sood William F. Ritter 《Journal of Water Resource and Protection》 2011年第11期788-804,共17页
A framework is built, wherein hydrological/water quality model is used to measure watershed sustainability. For this framework, watershed sustainability has been defined and quantified by defining social, environmenta... A framework is built, wherein hydrological/water quality model is used to measure watershed sustainability. For this framework, watershed sustainability has been defined and quantified by defining social, environmental and biodiversity indicators. By providing weightage to these indicators, a “River Basin Sustainability Index” is built. The watershed sustainability is then calculated based on the concepts of reliability, resilience and vulnerability. The framework is then applied to a case study, where, based on watershed management principles, four land use scenarios are created in GIS. The Soil and Water Assessment Tool (SWAT) is used as a hydrology/water quality model. Based on the results the land uses are ranked for sustainability and policy implications have been discussed. This results show that landuse (both type and location) impact watershed sustainability. The existing land use is weak in environmental sustainability. Also, riparian zones play a critical role in watershed sustainability, although beyond certain width their contribution is not significant. 展开更多
关键词 SUSTAINABILITY Development FRAMEWORK WATERSHED Resilience Reliability VULNERABILITY hydrological models Application LANDUSE
下载PDF
Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil 被引量:1
13
作者 Marinoé Gonzaga da Silva Antenor de Oliveira de Aguiar Netto +3 位作者 Ramiro Joaquim de Jesus Neves Anderson Nascimento do Vasco Carina Almeida Gregório Guirado Faccioli 《Journal of Environmental Protection》 2015年第8期837-850,共14页
Mathematical models of the quantity and quality of water in hydrographic basins enable simulation of a wide variety of processes, including the production of water and sediments, and the dynamics of point and nonpoint... Mathematical models of the quantity and quality of water in hydrographic basins enable simulation of a wide variety of processes, including the production of water and sediments, and the dynamics of point and nonpoint sources of pollution. These models have become increasingly complex, requiring large amounts of input data, which can increase the uncertainty of the results of simulations. For this reason, it is essential to perform calibration and validation procedures. The objective of this work was to conduct sensitivity analysis and calibration of a distributed hydrological model (SWAT) applied to the flows of water in the watershed of the Poxim River. Satisfactory performance of the model was indicated by the values obtained for the Nash-Sutcliffe efficiency coefficient (0.77), the percent bias (5.05), the root mean square error (0.48), and the ratio of the RMSE to the standard deviation of the observations (RSR) (0.49). The set of parameters identified here could be used for the simulation and evaluation of other scenarios. 展开更多
关键词 Sensitivity ANALYSIS CALIBRATION hydrological model WATERSHED
下载PDF
Hydrological characteristics and changes in the Nu-Salween River basin revealed with model-based reconstructed data 被引量:1
14
作者 YANG Fan LU Hui +6 位作者 YANG Kun HUANG Guang-wei LI Yi-shan WANG Wei LU Ping TIAN Fu-qiang HUANG Yu-gang 《Journal of Mountain Science》 SCIE CSCD 2021年第11期2982-3002,共21页
The Nu-Salween River(NSR),the longest free-flow river in Southeast Asia,plays an irreplaceable role in social development and ecological protection.The lower NSR region is particularly valuable as it is inhabited by a... The Nu-Salween River(NSR),the longest free-flow river in Southeast Asia,plays an irreplaceable role in social development and ecological protection.The lower NSR region is particularly valuable as it is inhabited by approximately 6.7 million people.The basin has limited hydraulic conservancy infrastructure and insufficient ability to cope with climate change risks.Studying the hydrological characteristics and changes in the basin provides the scientific basis for rational protection and development of the basin.However,owing to the limitation of observation data,previous studies have focused on the local area and neglected the study of the lower reaches,which is not enough to reflect the spatial characteristics of the entire basin.In this study,the ECMWF 5th generation reanalysis data(ERA5)and Multi-Source Weighted-Ensemble Precipitation(MSWEP)were applied to develop a geomorphology-based hydrological model(GBHM)for reconstructing hydrological datasets(i.e.GBHM-ERA5 and GBHM-MSWEP).The reconstructed datasets covering the complete basin were verified against the gauge observation and compared with other commonly used streamflow products,including Global Flood Awareness System v2.1,GloFAS-Reanalysis dataset v3.0,and linear optimal runoff aggregate(LORA).The comparison results revealed that GBHM-ERA5 is significantly better than the other four datasets and provides a good reproduction of the hydrological characteristics and trends of the NSR.Detailed analysis of GBHM-ERA5 revealed that:(1)A multi-year mean surface runoff represented 39%of precipitation over the basin during 1980–2018,which had low surface runoff in the upstream,while areas around the Three Parallel Rivers Area and the estuary had abundant surface runoff.(2)The surface runoff and discharge coefficient of variations in spring were larger than those in other seasons,and the inter-annual variation in the downstream was smaller than that in the upstream and midstream regions.(3)More than 70%of the basin areas showed a decreasing trend in the surface runoff,except for parts of Nagqu,south of Shan State in Myanmar,and Thailand,where surface runoff has an increasing trend.(4)The downstream discharge has dropped significantly at a rate of approximately 680 million cubic metresper year,and the decline rate is greater than that of upstream and midstream,especially in summer.This study provides a data basis for subsequent studies in the NSR basin and further elucidates the impact of climate change on the basin,which is beneficial to river planning and promotes international cooperation on the water-and eco-security of the basin. 展开更多
关键词 Nu-Salween River Distributed hydrologic model ERA5 Surface runoff DISCHARGE Climate Change
下载PDF
The Contribution of the Geospatial Information to the Hydrological Modelling of a Watershed with Reservoirs: Case of Low Oum Er Rbiaa Basin (Morocco) 被引量:1
15
作者 Youness Kharchaf Hassan Rhinane +1 位作者 Abdelhadi Kaoukaya Abdelhamid Fadil 《Journal of Geographic Information System》 2013年第3期258-268,共11页
Water is undoubtedly the most vital natural resource. Water use management is one of the greatest challenges that face humanity. The demand for water is continuously growing because of the population growth, the inten... Water is undoubtedly the most vital natural resource. Water use management is one of the greatest challenges that face humanity. The demand for water is continuously growing because of the population growth, the intensive urbanization and the development of industrial and agricultural activities. To face the increasing pressure on this vital resource, it is so necessary to set up the adequate instruments to ensure a rational and efficient management of this resource. In this context, the hydrological modeling is largely used as an instrument to assess the functioning of these resources at watershed scale. In addition, the use of spatial models let to depict and simulate the watershed processes at small spatial and heterogeneous scales that reflect the field reality more accurate and more realistic as possible. However, the use of spatial models requires geospatial data that must be gathered at very fine scales. The aim of this study is to highlight the contribution of geospatial data to assess the hydrologic modeling of watershed by using a spatial hydro-agricultural model, notably the SWAT model (Soil and water Assessment Tool). The study area is the Basin of Low Oum Er Rbiaa River which extends from the Al Massira dam to its outlet in the Atlantic Ocean. This watershed includes a set of dams (Daourat, Imfout and Sidi Maachou) built in waterfall fashion along the river. The objective was to simulate the hydrological functioning of this area that had never been modeled in order to assess the management of these reservoirs used essentially to produce electricity and fresh water. The implementation of the SWAT model required a spatial database that was built from topography, soil, land use and climate data. The calibration and validation of the model was carried out on a daily basis over several years (2001-2010) using The ArcSWAT tool integrated in ArcGIS software and the Parasol optimization method. The calibration of SWAT model was successfully done with 0.6 as value of Nash coefficient used commonly in hydrology to evaluate the model performance. The calibrated model was then used to estimate the hydrological balance sheet of the Low Oum Er Rbiaa to model the intermediate contribution of the three reservoirs situated in the watershed. 展开更多
关键词 modeling hydrologY LOW Oum ER Rbiaa RESERVOIRS GIS SWAT ArcSWAT WATERSHED
下载PDF
Hydrological Modeling of Aguibat Ezziar Watershed (Morocco), Comparative Study of Two Different Hydrological Models 被引量:1
16
作者 Mourad Khattatı Mostapha Serroukh +4 位作者 Ismail Rafık Hakim Mesmoudı Hassane Brırhet Yassine Bouslıhım Fatima Hara 《Journal of Geographic Information System》 2016年第1期50-56,共7页
This study aims to compare the performance of two hydrological models, conceptual (HEC-HMS) and spatial (ATHYS) on the Aguibat Ezziar watershed. The comparative analysis is based on the performances of simulation in t... This study aims to compare the performance of two hydrological models, conceptual (HEC-HMS) and spatial (ATHYS) on the Aguibat Ezziar watershed. The comparative analysis is based on the performances of simulation in terms of Nash-Sutcliffe and RSR. The study requires the collection of a series of data as inputs models namely rainfall data, water quantity, soil occupation, DTM and requires also a calibration in order to evaluate these models in validation phase. The simulation results were obtained from the validation phase aiming to replicate the operation of watershed Aguibat Ezziar, and present a suitable adjustment perspective of the observed hydrograph. These results show that the objective is achieved and a model distributed like ATHYS plays an effective role to improve the efficiency and present a high advantage in anticipation of runoff volume comparing with other models. 展开更多
关键词 Spatial modeling Distributed model Conceptual model hydrologY ATHYS hec-hms
下载PDF
Multi-Model Approach for Assessing the Influence of Calibration Criteria on the Water Balance in Ouémé Basin
17
作者 Aymar Yaovi Bossa Mahutin Aristide Oluwatobi Kpossou +1 位作者 Jean Hounkpè Félicien Djigbo Badou 《Journal of Water Resource and Protection》 CAS 2024年第3期207-218,共12页
Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteri... Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling. 展开更多
关键词 hydrological modelling Performance Criteria Water Balance Ouémé Basin
下载PDF
Parameter Estimation of a Distributed Hydrological Model Using a Genetic Algorithm 被引量:1
18
作者 Jasmin Boisvert Nassir El-Jabi +1 位作者 André St-Hilaire Salah-Eddine El Adlouni 《Open Journal of Modern Hydrology》 2016年第3期151-167,共18页
Water is a vital resource, and can also sometimes be a destructive force. As such, it is important to manage this resource. The prediction of stream flows is an important component of this management. Hydrological mod... Water is a vital resource, and can also sometimes be a destructive force. As such, it is important to manage this resource. The prediction of stream flows is an important component of this management. Hydrological models are very useful in accomplishing this task. The objective of this study is to develop and apply an optimization method useful for calibrating a deterministic model of the daily flows of the Miramichi River watershed (New Brunswick). The model used is the CEQUEAU model. The model is calibrated by applying a genetic algorithm. The Nash-Sutcliffe efficiency criterion, modified to penalize physically unrealistic results, was used as the objective function. The model was calibrated using flow data (1975-2000) from a gauging station on the Southwest Miramichi River (catchment area of 5050 km2), obtaining a Nash-Sutcliffe criterion of 0.83. Model validation was performed using flow data (2001-2009) from the same station (Nash-Sutcliffe criterion value of 0.80). This suggests that the model calibration is sufficiently robust to be used for future predictions. A second model validation was performed using data from three other measuring stations on the same watershed. The model performed well in all three additional locations (Nash-Sutcliffe criterion values of 0.77, 0.76 and 0.74), but was performing less well when applied to smaller sub-basins. Nonetheless, the relatively strong performance of the model suggests that it could be used to predict flows anywhere in the watershed, but caution is suggested for applications in small sub-basins. The performance of the CEQUEAU model was also compared to a simple benchmark model (average of each calendar day). A sensitivity analysis was also performed. 展开更多
关键词 hydrological modeling Genetic Algorithm CEQUEAU model Beta Function Miramichi River
下载PDF
Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models
19
作者 TIAN Fuqiang HU Hongchang +2 位作者 SUN Yu LI Hongyi LU Hui 《Chinese Geographical Science》 SCIE CSCD 2019年第6期934-948,共15页
In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies,... In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed. 展开更多
关键词 automatic calibration single-objective function MULTI-OBJECTIVE functions Xinanjiang model hydrological model
下载PDF
Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation
20
作者 Wen-zhuo Wang Zeng-chuan Dong +3 位作者 Tian-yan Zhang Li Ren Lian-qing Xue Teng Wu 《Water Science and Engineering》 EI CAS CSCD 2024年第1期13-20,共8页
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b... Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization. 展开更多
关键词 Stochastic monthly streamflow simulation Mixed D-vine copula Conditional quantile model Up-to-down sequential method Tangnaihai hydrological station
下载PDF
上一页 1 2 136 下一页 到第
使用帮助 返回顶部