期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Adsorption of sodium oleate at the microfine hematite/aqueous solution interface and its consequences for flotation 被引量:2
1
作者 Shaojun Bai Jie Li +3 位作者 Yunxiao Bi Jiaqiao Yuan Shuming Wen Zhan Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期105-113,共9页
The adsorption of sodium oleate(NaOL)at the microfine hematite/aqueous solution interface was investigated in this paper.Experimental research indicated that negative effects stemmed from the dissolution of the microf... The adsorption of sodium oleate(NaOL)at the microfine hematite/aqueous solution interface was investigated in this paper.Experimental research indicated that negative effects stemmed from the dissolution of the microfine hematite(D50=19.21μm)could be effectively eliminated via the appropriate dosage of NaOL at alkali pH conditions.Solution chemistry calculation and adsorption test results indicated that RCOOand(RCOO)_(2)^(2-) ions were responsible for microfine hematite flotation at pH 8.2.Zeta potential and FTIR measurements confirmed the co-adsorption of molecular and ionic oleate species occurred at pH 8.2.X-ray photoelectron spectroscopy(XPS)results further indicated that oleate species interacted with hematite surfaces mainly through chemisorption,giving rise to molecule/colloid formation of oleate and Fe―OL complex compound.Time-of-flight secondary ion mass spectrometry(ToF-SIMS)results demonstrated that oleate species adsorbed onto the hematite surfaces with a thickness of a few nanometers.Furthermore,the normalized peak intensity of C4H7+ions on the hematite sample at pH 8.2 increased remarkably comparing with corresponding result of hematite sample at pH 6.8.The new findings of the present study well revealed the dissolution of microfine hematite and the pH effects on the hematite flotation,as well as the adsorption characteristics of oleate species. 展开更多
关键词 Microfine hematite Oleate species Chemisorptions DISSOLUTION ToF-SIMS
下载PDF
Novel polyhydroxy cationic collector N-(2,3-propanediol)-Ndodecylamine: Synthesis and flotation performance to hematite and quartz 被引量:1
2
作者 Wenbao Liu Xiangyu Peng +5 位作者 Wengang Liu Kelin Tong Yanbai Shen Qiang Zhao Sikai Zhao Wenhan Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期115-122,共8页
To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It... To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It was prepared by a nucleophilic substitution reaction,which showed better solubility and hydrophobicity than DDA and was firstly employed as the collector for the separation of hematite and quartz.Flotation tests showed that PDDA had an excellent flotation performance and significantly better selectivity than DDA.In addition,the flotation performance and adsorption mechanism of PDDA on hematite and quartz surfaces were studied using Fourier transform infrared spectroscopy(FTIR),zeta potential and X-ray photoelectron spectroscopy(XPS)tests.These results demonstrated that the interaction between PDDA and the minerals’surfaces was mainly electrostatic adsorption and hydrogen bond,while PDDA tended to adsorb on the surfaces of quartz more than that of hematite.Performance optimization of amine collectors by introducing hydroxyl was also verified,which was of great meaning to the design,development,and application of the polyhydroxy cationic collector.In conclusion,PDDA could be used as a potential collector in the flotation separation of quartz and hematite. 展开更多
关键词 Polyhydroxy collector QUARTZ hematite Interaction mechanism Hydrogen bonding
下载PDF
Bioprocess-inspired Actin Biomineralized Hematite Mesocrystals for Energy Storage
3
作者 XU Wei ZHAO Chao +1 位作者 XIE Jingjing WANG Rongjie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1299-1303,共5页
Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in liv... Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in living mussels.Here,we used intracellular actin to synthesize hematite by biomineralization.Biomineralized hematite has a nano spindle structure with a particle size of approximately 150 nm.The microstructure indicates that the prepared hematite is a mesocrystals composed of ordered arrangement and assembly of primary nanoparticles.In addition,hematite mesocrystals exhibit good lithium storage performance as electrode materials for lithium batteries.The discharge specific capacity of the battery remained at 560.7 m Ah·g^(-1)after 130 cycles at a current density of 200 m A·g^(-1).This work expands the synthesis methods of hematite by biomineralization,and provides a new strategy for preparing inorganic materials by intracellular proteins. 展开更多
关键词 ACTIN hematite BIOMINERALIZATION MESOCRYSTALS lithium battery
下载PDF
Synthesis and Characterization of Gadolinium Oxide-Hematite Magnetic Ceramic Nanostructures
4
作者 Sarah Glasser Andrew J. Craig +3 位作者 Felicia Tolea Mihaela Sofronie Jennifer A. Aitken Monica Sorescu 《Journal of Minerals and Materials Characterization and Engineering》 CAS 2023年第1期1-15,共15页
Mixed-oxide nanostructures of the type xGd<sub>2</sub>O<sub>3</sub>-(1-x)α-Fe<sub>2</sub>O<sub>3</sub> (x=0.1, 0.3, 0.5 and 0.7) were synthesized by mechanochemical act... Mixed-oxide nanostructures of the type xGd<sub>2</sub>O<sub>3</sub>-(1-x)α-Fe<sub>2</sub>O<sub>3</sub> (x=0.1, 0.3, 0.5 and 0.7) were synthesized by mechanochemical activation for ball milling times of 0, 2, 4, 8 and 12 hours. The systems were subsequently analyzed by M&#1255;ssbauer spectroscopy, X-ray powder diffraction (XRPD), magnetic measurements and optical diffuse reflectance spectroscopy. The magnetic hyperfine field was studied as function of ball milling time for all sextets involved and found to be consistent with the formation of a limited solid solution in the systems investigated. The end-product was the gadolinium perovskite, represented by a doublet whose abundance was derived as function of the milling time. The XRPD patterns recorded for the equimolar composition were dominated by the diffraction peaks of GdFeO<sub>3</sub> after 12 hours of milling. The hysteresis loops were recorded at 300 and 5 K in an applied magnetic field of 5 T and were interpreted as a superposition of paramagnetic behavior of gadolinium oxide and weak ferromagnetic behavior of hematite and gadolinium perovskite. The Morin transition of hematite was inferred from zero-field-cooling-field-cooling (ZFC-FC) curves measured with a magnetic field of 200 Oe in the 5-300 K temperature range and was found to depend on the ball milling time. Optical diffuse reflectance spectra showed that the compounds were semiconductors with an optical band gap of 2.1 eV. 展开更多
关键词 Gadolinium Oxide hematite Mӧssbauer Spectroscopy Magnetic Properties Optical Properties
下载PDF
Hematite reduction by hydrogen plasma:Where are we now? 被引量:1
5
作者 Kali Charan Sabat 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第10期1932-1945,共14页
Currently,iron is extracted from ores such as hematite by carbothermic reduction.The extraction process includes several unit steps/processes that require large-scale equipment and significant financial investments.Ad... Currently,iron is extracted from ores such as hematite by carbothermic reduction.The extraction process includes several unit steps/processes that require large-scale equipment and significant financial investments.Additionally,the extraction process produces a substantial amount of harmful carbon dioxide(CO_(2)).Alternative to carbothermic reduction is the reduction by hydrogen plasma(HP).HP is mainly composed of exciting species that facilitate hematite reduction by providing thermodynamic and kinetic advantages,even at low temperatures.In addition to these advantages,hematite reduction by HP produces water,which is environmentally beneficial.This report reviews the theory and practice of hematite reduction by HP.Also,the present state of the art in solid-state and liquid-state hematite reduction by HP has been examined.The in-flight hematite reduction by HP has been identified as a potentially promising alternative to carbothermic reduction.However,the in-flight reduction is still plagued with problems such as excessively high temperatures in thermal HP and considerable vacuum costs in non-thermal HP.These problems can be overcome by using non-thermal atmospheric HP that deviates significantly from local thermodynamic equilibrium. 展开更多
关键词 hematite iron ore hematite reduction iron production hydrogen plasma non-thermal plasma THERMODYNAMICS KINETICS
下载PDF
Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment 被引量:16
6
作者 Wen-tao Zhou Yue-xin Han +1 位作者 Yong-sheng Sun Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期443-453,共11页
The efficient development and utilization of high-phosphorus oolitic hematite is of great strategic significance for the sustainable supply of iron-ore resources in China.In this paper,the mechanism of high-temperatur... The efficient development and utilization of high-phosphorus oolitic hematite is of great strategic significance for the sustainable supply of iron-ore resources in China.In this paper,the mechanism of high-temperature pretreatment for enhancing the effect of iron enrichment and dephosphorization in the magnetization roasting–leaching process was studied by X-ray diffraction(XRD),vibration sample magnetometer(VSM),scanning electron microscopy and energy dispersive spectrometry(SEM–EDS).Compared with the process without high-temperature pretreatment,the iron grade of the magnetic separation concentrate after high-temperature pretreatment had increased by 0.98%,iron recovery rate had increased by 1.33%,and the phosphorus content in the leached residue had decreased by 0.12%.High-temperature pretreatment resulted in the dehydration and decomposition of hydroxyapatite,the dehydration of limonite and the thermal decomposition of siderite,which can produce pores and cracks and weaken the compactness of the ore,improve the magnetization characteristics of roasted ore,and strengthen the iron enrichment and dephosphorization during the magnetization roasting and leaching process. 展开更多
关键词 high-phosphorus oolitic hematite high-temperature PRETREATMENT iron ENRICHMENT and DEPHOSPHORIZATION MAGNETIZATION roasting–leaching process phase transformation
下载PDF
Effect of sodium alginate on reverse flotation of hematite and its mechanism 被引量:12
7
作者 Ya-feng Fu Wan-zhong Yin +3 位作者 Bin Yang Chuang Li Zhang-lei Zhu Dong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第10期1113-1122,共10页
Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects... Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects of chlorite, leading to a significant decrease in the total Fe(TFe) grade of the concentrate. In this work, the effect of sodium alginate on the reverse flotation of hematite was systematically investigated. Flotation tests of artificially mixed ores were conducted, and the results showed that sodium alginate can significantly improve the removal rates of quartz and chlorite. The adsorption measurements, infrared spectroscopy, and contact angle tests demonstrated that sodium alginate adsorbs on the quartz surface by chelating with calcium ions, thereby weakening the steric hindrance of oleate ions and increasing the adsorption capacity of sodium oleate to ultimately improve the removal rate of quartz. Furthermore, owing to its lower density and fine particle size, chlorite is easily entrained into the foam layer. Sodium alginate dramatically increases the liquid-to-gas ratio of the foam layer by increasing pulp viscosity, thereby increasing the entrainment rate of chlorite and finally improving its removal rate. The core content of this thesis bears significance in improving the Fe grade in the reverse flotation of chlorite-containing hematite. 展开更多
关键词 hematite REVERSE FLOTATION sodium ALGINATE PULP viscosity ENTRAINMENT rate
下载PDF
Magnetizing Roasting Mechanism and Effective Ore Dressing Process for Oolitic Hematite Ore 被引量:18
8
作者 余永富 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期177-182,共6页
Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roas... Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roasting-magnetic separation process is a promising approach for the processing of oolitic hematite ore from western Hubei Province. 展开更多
关键词 oolitic hematite ore ore dressing magnetizing roasting MECHANISM
下载PDF
Study on the strength of cold-bonded high-phosphorus oolitic hematite-coal composite briquettes 被引量:7
9
作者 Wen Yu Ti-chang Sun +2 位作者 Zhen-zhen Liu Jue Kou Cheng-yan Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期423-430,共8页
Composite briquettes containing high-phosphorus oolitic hematite and coal were produced with a twin-roller briquette machine using sodium carboxymethyl cellulose, molasses, starch, sodium silicate, and bentonite as bi... Composite briquettes containing high-phosphorus oolitic hematite and coal were produced with a twin-roller briquette machine using sodium carboxymethyl cellulose, molasses, starch, sodium silicate, and bentonite as binders. The effect of these binders on the strength of the composite briquettes, including cold strength and high-temperature strength, was investigated by drop testing and compression testing. It was found the addition of Ca(OH)2 and Na2CO3 not only improved the reduction of iron oxides and promoted dephosphorization during the reduction-separation process but also provided strength to the composite briquettes during the briquetting process; a compressive strength of 152.8 N per briquette was obtained when no binders were used. On this basis, the addition of molasses, sodium silicate, starch, and ben- tonite improved the cold strength of the composite briquettes, and a maximum compressive strength of 404.6 N per briquette was obtained by using starch. When subjected to a thermal treatment at 1200~C, all of the composite briquettes suffered from a sharp decrease in compressive strength during the initial reduction process. This decrease in strength was related to an increase in porosity of the composite briquettes. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses showed that the decrease in strength of the composite briquettes could be caused by four factors: decomposition of bonding materials, gasification of coal, transportation of byproduct gases in the composite briquettes, and thermal stress. 展开更多
关键词 hematite BRIQUETTING binders compressive strength POROSITY direct reduction process-
下载PDF
Optimization of flotation variables for the recovery of hematite particles from BHQ ore 被引量:7
10
作者 Swagat S. Rath Hrushikesh Sahoo B. Das 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期605-611,共7页
The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore,... The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2,by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results. 展开更多
关键词 hematite iron ore treatment FLOTATION metal recovery design of experiments mathematical models opti-mization
下载PDF
Magnetic and flotation studies of banded hematite quartzite (BHQ) ore for the production of pellet grade concentrate 被引量:7
11
作者 B. Das B.K.Mishra +3 位作者 S. Prakash S.K.Das P.S.R.Reddy S.I.Angadi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期675-682,共8页
To identify and establish beneficiation techniques for banded hematite quartzite (BHQ) iron ore, a comprehensive research on BHQ ore treatment was carried out. The BHQ ore was assayed as 38.9wt% Fe, 42.5wt% SiO2, an... To identify and establish beneficiation techniques for banded hematite quartzite (BHQ) iron ore, a comprehensive research on BHQ ore treatment was carried out. The BHQ ore was assayed as 38.9wt% Fe, 42.5wt% SiO2, and 1.0wt% Al2O3. In this ore, hematite and quartz are present as the major mineral phases where goethite, martite, and magnetite are present in small amounts. The liberation of hematite particles can be enhanced to about 82% by reducing the particle size to below 63 μm. The rejection of silica particles can be obtained by magnetic and flotation separation techniques. Overall, the BHQ ore can be enriched to 65.3wt% Fe at 61.9% iron recovery. A flowsheet has been suggested for the commercial exploitation of the BHQ ore. 展开更多
关键词 hematite BENEFICIATION magnetic separation FLOTATION PELLETIZING
下载PDF
Phase transformation in suspension roasting of oolitic hematite ore 被引量:6
12
作者 李艳军 王儒 +1 位作者 韩跃新 魏新超 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4560-4565,共6页
Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase tr... Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase transformation for iron minerals was investigated by XRD and Mossbauer spectrum,and the characteristics of roasted product were analyzed by VSM and SEM-EDS.Results indicate that the magnetic concentrate is of 58.73% Fe with iron recovery of 83.96% at 650 °C.The hematite is rapidly transformed into magnetite during the roasting with transformation ratio of 92.75% at 650 °C.Roasting temperature has a significant influence on the phase transformation of hematite to magnetite.The transformation ratio increases with increased temperature.After roasting,the magnetic susceptibility is significantly improved,while iron ore microstructure is not altered significantly. 展开更多
关键词 oolitic hematite ore suspension roasting Mossbauer spectrum magnetic property phase transformation
下载PDF
Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite:A review 被引量:5
13
作者 Hanquan Zhang Pengfei Zhang +1 位作者 Feng Zhou Manman Lu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期865-876,共12页
A large number of studies have shown that oolitic hematite is an iron ore that is extremely difficult to utilize because of its fine disseminated particle size, high harmful impurity content and oolitic structure.To r... A large number of studies have shown that oolitic hematite is an iron ore that is extremely difficult to utilize because of its fine disseminated particle size, high harmful impurity content and oolitic structure.To recover iron from oolitic hematite, we developed a novel multistage dynamic magnetizing roasting technology. Compared with traditional magnetizing roasting technologies, this novel technology has the following advantages: firstly, the oolitic hematite is dynamically reduced in a multi-stage roasting furnace, which shortens the reduction time and avoids ringing and over-reduction;secondly, the novel dynamic magnetizing roasting technology has strong raw material adaptability, and the size range of raw materials can be as wide as 0–15 mm;thirdly, the roasting furnace adopts a preheating-heating process, and the low-calorific value blast furnace gas can be used as the fuel and reductant, which greatly reduces the cost. The actual industrial production data showed that the energy consumption in the roasting process can be less than 35 kg of standard coal per ton of raw ore. The iron grade of the concentrate and iron recovery reached 65% and 90%, respectively. 展开更多
关键词 Oolitic hematite ore Magnetizing roasting Reduction kinetics Over-reduction Iron mineralogy
下载PDF
Interaction of humic substances and hematite:FTIR study 被引量:4
14
作者 FUHong-bo QUANXie CHENShuo ZHAOHui-min ZHAOYa-zhi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第1期43-47,共5页
The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consi... The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consist evidences by two different sampling preparation methods that the interaction mechanism between humic substances and hematite was mainly conform to the ligand exchange involving carboxylic functional groups of humic substances and the surfaces sites of hematite. The present method, although associated with some uncertainties, provided an opportunity to increase the knowledge in this field. 展开更多
关键词 humic substances fulvic acid humic acid hematite FTIR COMPLEX
下载PDF
Performance evaluation for selectivity of the flocculant on hematite in selective flocculation 被引量:4
15
作者 Lopamudra Panda Pradip K.Banerjee +2 位作者 Surendra Kumar Biswal R.Venugopal N.R.Mandre 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1123-1129,共7页
Increased demand for iron ore necessitates the utilization of low-grade iron ore fines, slimes, and existing tailings. Selective flocculation can be an alternative physico-chemical process for utilizing these low-grad... Increased demand for iron ore necessitates the utilization of low-grade iron ore fines, slimes, and existing tailings. Selective flocculation can be an alternative physico-chemical process for utilizing these low-grade fines, slimes, and tailings. In selective fiocculation, the most critical objective is the selection of proper reagents that will make fioc of desired minerals. In present study, selective flocculation was applied to ultra-fine synthetic mixtures of hematite and kaolinite, and the Fe value was upgraded up to 65.78% with the reduction of Al2O3 and SiO2 values to 2.65% and 3.6670, respectively. Here, degraded wheat starch was used as a flocculant.In this process, separation occurs on the basis of the selectivity of the flocculant. The selectivity of the fiocculant can be quantified in terms of separation efficiency. Here, an attempt was also made to develop a correlation between separation efficiency and major operating parameters such as flocculent dose, pH value, and solid concentration to predict the separation performance. 展开更多
关键词 hematite KAOLINITE selective fiocculation modeling iron ores TAILINGS
下载PDF
Effect and mechanism of siderite on reverse flotation of hematite 被引量:4
16
作者 Wan-zhong Yin Dong Li +2 位作者 Xi-mei Luo Jin Yao Qian-yu Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第4期373-379,共7页
The effects of siderite on reverse flotation of hematite were investigated using micro flotation, adsorption tests, and Fourier transform infrared spectroscopy. The flotation results show that interactions between sid... The effects of siderite on reverse flotation of hematite were investigated using micro flotation, adsorption tests, and Fourier transform infrared spectroscopy. The flotation results show that interactions between siderite and quartz are the main reasons that siderite significantly influences the floatability. The interactions are attributed to dissolved siderite species and fine siderite particles. The interaction due to the dissolved species is, however, dominant. Derjaguin-Landau-Verwey-Overbeek(DLVO) theoretical calculations reveal that adhesion on quartz increases when the siderite particle size decreases and that fine particles partly influence quartz floatability. Chemical solution calculations indicate that the dissolved species of siderite might convert the surface of active quartz to CaCO_3 precipitates that can be depressed by starch. The theoretical calculations are in good agreement with the results of adsorption tests and FTIR spectroscopy and explain the reasons why siderite significantly influences reverse flotation of hematite. 展开更多
关键词 hematite SIDERITE reverse flotation solution chemistry
下载PDF
Facile Synthesis of Uniform Hollow Hematite Sub-micro Spheres with Controllable Shell Thickness 被引量:3
17
作者 闫共芹 官建国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期32-38,共7页
A simple method was developed to prepare the uniform hematite hollow submicro-spheres with controllable structure and different diameter based on monodisperse poly(styrene-co-acrylic acid) [P(St-co-AA)] particles.... A simple method was developed to prepare the uniform hematite hollow submicro-spheres with controllable structure and different diameter based on monodisperse poly(styrene-co-acrylic acid) [P(St-co-AA)] particles. The structure and formation mechanism of the hollow spheres were investigated in detail. The control mechanism of shell thickness was also discussed. The results indicated that the shell thickness and coarseness of the synthesized core-shell hematite hollow spheres could be tuned simply by the surface carboxyl content of the P(St-co-AA) particles. This method provided a new approach for the structure control in the preparation of hollow spheres. A Brunauer-Emmett-Teller (BET) test shows that the prepared hollow spheres have large surface areas which were decreased along with the increase of the diameter. The magnetic properties of the as-obtained hematite hollow spheres were investigated. The result showed that the coercivity and saturated magnetization were increased along with the increase of the shell thickness, and the remanent magnetization was increased along with the decrease of the diameter. 展开更多
关键词 hollow spheres hematite shell thickness BET special surface area magnetization properties
下载PDF
Adsorbability of Mycobacterium phlei on hematite surface 被引量:3
18
作者 Huifen Yang Qiang Zhang Zhuan Jiang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期103-106,共4页
The adsorption of microorganisms on the mineral surface is the base of microorganisms that are considered as mineral processing reagents. The principles of the use of a highly hydrophobic and negatively charged bacter... The adsorption of microorganisms on the mineral surface is the base of microorganisms that are considered as mineral processing reagents. The principles of the use of a highly hydrophobic and negatively charged bacterium, Mycobacterium phlei, as a flocculating-flotating agent for finely divided hematite were investigated. The flocculating-floating recovery is strongly dependent on the pH and the dosage of the bacterium. Generally the pH should be controlled over the range of 5.5-7, and the dosage should be controlled about 16 mg/L. The infrared spectrometry analysis indicates that the six functional groups of M. phlei, substituted aromatic compound groups, -(CH2) n-groups, -CH2(-CH3) groups, carbonyl groups, aromatic hydrocarbon groups, and carboxyl groups, are on the hematite surface, among which the first five ones contribute physical adsorption and only the carboxyl groups provide chemisorption. Microscopic analysis reveals that the dimensions and tight aggregation degree of the flocs of hematite particles formed by M. phlei are also impacted by the pH and the content of M. phlei in flotation. 展开更多
关键词 MICROORGANISMS mycobacterium phlei hematite FLOCCULATION FLOTATION infrared spectrometry microscopic analysis physical adsorption CHEMISORPTION
下载PDF
Interactions of ferro-nanoparticles(hematite and magnetite) with reservoir sandstone: implications for surface adsorption and interfacial tension reduction 被引量:3
19
作者 Abdullah Musa Ali Noorhana Yahya Saima Qureshi 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1037-1055,共19页
There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock... There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT. 展开更多
关键词 Magnetite and hematite nanoparticles Rock surface adsorption Molecular dynamics simulation Interfacial tension(IFT)
下载PDF
Mechanism and kinetics of hydrothermal replacement of magnetite by hematite 被引量:2
20
作者 Jing Zhao Joel Brugger Allan Pring 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期29-41,共13页
The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the re... The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the relative effects of redox and non-redox processes on the transformation. The results indicate that oxygen is not an essential factor in the replacement reaction of magnetite by hematite, but the addition of excess oxidant does trigger the oxidation reaction, and increases the kinetics of the transformation. However, even under high O_2(aq) environments, some of the replacement still occurred via Fe^(2+) leaching from magnetite. The kinetics of the replacement reaction depends upon temperature and solution parameters such as pH and the concentrations of ligands, all of which are factors that control the solubility of magnetite and affect the transport of Fe^(2+) (and the oxidant) to and from the reaction front. Reaction rates are fast at ~200℃, and in nature transport properties of Fe and,in the case of the redox-controlled replacement, the oxidant will be the rate-limiting control on the reaction progress. Using an Avrami treatment of the kinetic data and the Arrhenius equation, the activation energy for the transformation under non-redox conditions was calculated to be 26 ± 6 kJ mol^(-1).This value is in agreement with the reported activation energy for the dissolution of magnetite, which is the rate-limiting process for the transformation under non-redox conditions. 展开更多
关键词 Mineral replacement reaction hematite MAGNETITE KINETICS Non-redox Redox
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部