In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. ...In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.展开更多
Human ether-a-go-go-related gene (HERG1) K^+ channels are overexpressed in leukemia, which contributes to neoangiogene- sis. The purpose of this study was to investigate the role of HERG1 K^+ channels on leukemia ...Human ether-a-go-go-related gene (HERG1) K^+ channels are overexpressed in leukemia, which contributes to neoangiogene- sis. The purpose of this study was to investigate the role of HERG1 K^+ channels on leukemia angiogenesis. We cultured human umbili- cal vein endothelial cells (HUVECs) in conditioned media, which were derived from leukemic cells with or without E-4031, a HERG1 K^+ channel special inhibitor. The HUVECs proliferation was mea- sured using CCK-8 assay and migration by a Trans-well. Endothelial tube formation was investigated using Matrigel. Vascular endothelial growth factor (VEGF) levels were tested by ELISA and VEGF mRNA expression using RT-PCR. Our results revealed that blocking HERG1 K^+ channels could inhibit leukemia-induced HUVECs pro- liferation, migration, and tube formation in vitro. The results sug- gested that HERG1 K~ channels could increase leukemia angio- genesis. Furthermore, blockage of HERG1 K^+ channels could also decrease leukemic cells secreting VEGF and expressing VEGF mRNA. HERG1 K^+ channels have a promoting effect on leukemia angiogenesis, and the possible mechanism may be that HERG1 K^+ channels enhance VEGF expression. Thus, HERG1 K4 channel is a potential target of antiangiogenesis in leukemia.展开更多
Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell prolife...Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.展开更多
基金a grant from National Science Foundation for Distinguished Young Scholars of China (No. 30225038)
文摘In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.
基金Supported by the National Natural Science Foundation of China(30971112)
文摘Human ether-a-go-go-related gene (HERG1) K^+ channels are overexpressed in leukemia, which contributes to neoangiogene- sis. The purpose of this study was to investigate the role of HERG1 K^+ channels on leukemia angiogenesis. We cultured human umbili- cal vein endothelial cells (HUVECs) in conditioned media, which were derived from leukemic cells with or without E-4031, a HERG1 K^+ channel special inhibitor. The HUVECs proliferation was mea- sured using CCK-8 assay and migration by a Trans-well. Endothelial tube formation was investigated using Matrigel. Vascular endothelial growth factor (VEGF) levels were tested by ELISA and VEGF mRNA expression using RT-PCR. Our results revealed that blocking HERG1 K^+ channels could inhibit leukemia-induced HUVECs pro- liferation, migration, and tube formation in vitro. The results sug- gested that HERG1 K~ channels could increase leukemia angio- genesis. Furthermore, blockage of HERG1 K^+ channels could also decrease leukemic cells secreting VEGF and expressing VEGF mRNA. HERG1 K^+ channels have a promoting effect on leukemia angiogenesis, and the possible mechanism may be that HERG1 K^+ channels enhance VEGF expression. Thus, HERG1 K4 channel is a potential target of antiangiogenesis in leukemia.
基金supported by a grant from the Natural Science Foundation of China(30772128)
文摘Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.