A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinde...A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation, By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple.展开更多
Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and th...Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and the fuel economy is compared among the different driver models. The different human-simulated characteristics of the driver models are emphatically analyzed. The analysis results indicate that the driver models based on PID, simple fuzzy logic and expert PID are corresponding to the handling characteristics of different drives. The driver models of different human-simulated characteristics bring the handling divergence of drivers with different driving level and habit to the HEV forward simulation, and that is significant to the all-around verification and validation of the control strategy for HEV. System simulation results of different driver models validate the impact of driver models to the dynamic and fuel economy performance of HEV.展开更多
Discrete choice model acts as one of the most important tools for studies involving mode split in the context of transport demand forecast. As different types of discrete choice models display their merits and restric...Discrete choice model acts as one of the most important tools for studies involving mode split in the context of transport demand forecast. As different types of discrete choice models display their merits and restrictions diversely, how to properly select the specific type among discrete choice models for realistic application still remains to be a tough problem. In this article, five typical discrete choice models for transport mode split are, respectively, discussed, which includes multinomial logit model, nested logit model (NL), heteroscedastic extreme value model, multinominal probit model and mixed multinomial logit model (MMNL). The theoretical basis and application attributes of these five models are especially analysed with great attention, and they are also applied to a realistic intercity case of mode split forecast, which results indi- cating that NL model does well in accommodating similarity and heterogeneity across alternatives, while MMNL model serves as the most effective method for mode choice prediction since it shows the highest reliability with the least significant prediction errors and even outperforms the other four models in solving the heterogeneity and similarity problems. This study indicates that conclusions derived from a single discrete choice model are not reliable, and it is better to choose the proper model based on its characteristics.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2001AA501211).
文摘A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation, By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple.
基金Supported by the National Natural Science Foundation of China(50905018)
文摘Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and the fuel economy is compared among the different driver models. The different human-simulated characteristics of the driver models are emphatically analyzed. The analysis results indicate that the driver models based on PID, simple fuzzy logic and expert PID are corresponding to the handling characteristics of different drives. The driver models of different human-simulated characteristics bring the handling divergence of drivers with different driving level and habit to the HEV forward simulation, and that is significant to the all-around verification and validation of the control strategy for HEV. System simulation results of different driver models validate the impact of driver models to the dynamic and fuel economy performance of HEV.
基金supported by the Science&Technology pillar project(No.0556)of Guangzhou
文摘Discrete choice model acts as one of the most important tools for studies involving mode split in the context of transport demand forecast. As different types of discrete choice models display their merits and restrictions diversely, how to properly select the specific type among discrete choice models for realistic application still remains to be a tough problem. In this article, five typical discrete choice models for transport mode split are, respectively, discussed, which includes multinomial logit model, nested logit model (NL), heteroscedastic extreme value model, multinominal probit model and mixed multinomial logit model (MMNL). The theoretical basis and application attributes of these five models are especially analysed with great attention, and they are also applied to a realistic intercity case of mode split forecast, which results indi- cating that NL model does well in accommodating similarity and heterogeneity across alternatives, while MMNL model serves as the most effective method for mode choice prediction since it shows the highest reliability with the least significant prediction errors and even outperforms the other four models in solving the heterogeneity and similarity problems. This study indicates that conclusions derived from a single discrete choice model are not reliable, and it is better to choose the proper model based on its characteristics.