High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requi...High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.展开更多
This paper explains intra prediction method for High Efficiency Video Coding(HEVC).Intra prediction removes correlation of adjacent samples in spatial domain.Intra predictor requires reference images which are stored ...This paper explains intra prediction method for High Efficiency Video Coding(HEVC).Intra prediction removes correlation of adjacent samples in spatial domain.Intra predictor requires reference images which are stored in external memory.Memory access is required frequently in process of intra prediction.The proposed architecture can reduce external memory access by optimized internal buffer.展开更多
For the characteristics of intra prediction algorithms, the data dependence and parallelism between intra prediction models are first analyzed. This paper proposes a parallelization method based on dynamic reconfigura...For the characteristics of intra prediction algorithms, the data dependence and parallelism between intra prediction models are first analyzed. This paper proposes a parallelization method based on dynamic reconfigurable array processors provided by the project team, and uses data level parallel(DLP) algorithms in multi-core units. The experimental results show that Y-component of peak signal to noise ratio(Y-PSNR) is improved about 10 dB and the time is saved 63% compared with high-efficiency video coding(HEVC) test model HM10.0. This method can effectively reduce codec time of the video and reduce computational complexity.展开更多
Based on the flexible quadtree partition structure of coding tree units(CTUs),the deblocking filter(DBF)in high efficiency video coding(HEVC)consumes a lot of resources when implemen-ted by hardware.It is difficult to...Based on the flexible quadtree partition structure of coding tree units(CTUs),the deblocking filter(DBF)in high efficiency video coding(HEVC)consumes a lot of resources when implemen-ted by hardware.It is difficult to achieve flexible switching between different sizes of coding blocks.Aiming at this problem,a reconfigurable implementation of DBF is proposed.Based on the dynamic programmable reconfigurable video array processor(DPRAP)with context switch reconfiguration mechanism,the runtime flexible switching of two coding block sizes is realized.The experimental results show that the highest work-frequency reaches 151.4 MHz.Compared with the dedicated hardware architecture scheme,the resource consumption can be reduced by 28.1%while realizing the dynamic switching between algorithms of two coding block sizes.Compared with the results of HM16.0,by using a complete I-frame for testing,the average peak signal-to-noise ratio(PSNR)of the reconfigurable implementation proposed in this paper has increased by 3.0508 dB,the coding quality has improved to a certain extent.展开更多
The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth...The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats.展开更多
The latest video coding standard High Efficiency Video Coding (HEVC) can achieve much higher coding efficiency than previous video coding standards. Particularly, by exploiting the hierarchical B-picture prediction ...The latest video coding standard High Efficiency Video Coding (HEVC) can achieve much higher coding efficiency than previous video coding standards. Particularly, by exploiting the hierarchical B-picture prediction structure, temporal redundancy among neighbor frarnes is eliminated remarkably well. In practice, videos available to consumers usually contain many repeated shots, such as TV series, movies, and talk shows. According to our observations, when these videos are encoded by HEVC with the hierarchical B-picture structure, the temporal correlation in each shot is well exploited. However, the long-term correlation between repeated shots has not been used. We propose a long-term prediction (LTP) scheme to use the long-term temporal correlation between correlated shots in a video. The long-term reference (LTR) frames of a source video are chosen by clustering similar shots and extracting the representative frames, and a modified hierarchical B-picture coding structure based on an LTR frame is introduced to support long-term temporal prediction. An adaptive quantization method is further designed for LTR frames to improve the overall video coding efficiency. Experimental results show that up to 22.86% coding gain can be achieved using the new coding scheme.展开更多
Quality control is of vital importance in compressing three-dimensional(3D)medical imaging data.Optimal com-pression parameters need to be determined based on the specific quality requirement.In high efficiency video ...Quality control is of vital importance in compressing three-dimensional(3D)medical imaging data.Optimal com-pression parameters need to be determined based on the specific quality requirement.In high efficiency video coding(HEVC),regarded as the state-of-the-art compression tool,the quantization parameter(QP)plays a dominant role in controlling quality.The direct application of a video-based scheme in predicting the ideal parameters for 3D medical image compression cannot guarantee satisfactory results.In this paper we propose a learning-based parameter prediction scheme to achieve efficient quality control.Its kernel is a support vector regression(SVR)based learning model that is capable of predicting the optimal QP from both vid-eo-based and structural image features extracted directly from raw data,avoiding time-consuming processes such as pre-encoding and iteration,which are often needed in existing techniques.Experimental results on several datasets verify that our approach outperforms current video-based quality control methods.展开更多
文摘High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1021-0010)
文摘This paper explains intra prediction method for High Efficiency Video Coding(HEVC).Intra prediction removes correlation of adjacent samples in spatial domain.Intra predictor requires reference images which are stored in external memory.Memory access is required frequently in process of intra prediction.The proposed architecture can reduce external memory access by optimized internal buffer.
基金Supported by the National Natural Science Foundation of China(No.61772417,61634004,61602377,61272120)the Shaanxi Provincial Co-ordination Innovation Project of Science and Technology(No.2016KTZDGY02-04-02)the Shaanxi Provincial key R&D plan(No.2017GY-060)
文摘For the characteristics of intra prediction algorithms, the data dependence and parallelism between intra prediction models are first analyzed. This paper proposes a parallelization method based on dynamic reconfigurable array processors provided by the project team, and uses data level parallel(DLP) algorithms in multi-core units. The experimental results show that Y-component of peak signal to noise ratio(Y-PSNR) is improved about 10 dB and the time is saved 63% compared with high-efficiency video coding(HEVC) test model HM10.0. This method can effectively reduce codec time of the video and reduce computational complexity.
基金Supported by the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61874087,61634004)the Shaanxi Province Key R&D Plan(No.2021GY-029,2021KW-16).
文摘Based on the flexible quadtree partition structure of coding tree units(CTUs),the deblocking filter(DBF)in high efficiency video coding(HEVC)consumes a lot of resources when implemen-ted by hardware.It is difficult to achieve flexible switching between different sizes of coding blocks.Aiming at this problem,a reconfigurable implementation of DBF is proposed.Based on the dynamic programmable reconfigurable video array processor(DPRAP)with context switch reconfiguration mechanism,the runtime flexible switching of two coding block sizes is realized.The experimental results show that the highest work-frequency reaches 151.4 MHz.Compared with the dedicated hardware architecture scheme,the resource consumption can be reduced by 28.1%while realizing the dynamic switching between algorithms of two coding block sizes.Compared with the results of HM16.0,by using a complete I-frame for testing,the average peak signal-to-noise ratio(PSNR)of the reconfigurable implementation proposed in this paper has increased by 3.0508 dB,the coding quality has improved to a certain extent.
文摘The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats.
基金Project supported by the National Natural Science Foundation of China(No.61371162)
文摘The latest video coding standard High Efficiency Video Coding (HEVC) can achieve much higher coding efficiency than previous video coding standards. Particularly, by exploiting the hierarchical B-picture prediction structure, temporal redundancy among neighbor frarnes is eliminated remarkably well. In practice, videos available to consumers usually contain many repeated shots, such as TV series, movies, and talk shows. According to our observations, when these videos are encoded by HEVC with the hierarchical B-picture structure, the temporal correlation in each shot is well exploited. However, the long-term correlation between repeated shots has not been used. We propose a long-term prediction (LTP) scheme to use the long-term temporal correlation between correlated shots in a video. The long-term reference (LTR) frames of a source video are chosen by clustering similar shots and extracting the representative frames, and a modified hierarchical B-picture coding structure based on an LTR frame is introduced to support long-term temporal prediction. An adaptive quantization method is further designed for LTR frames to improve the overall video coding efficiency. Experimental results show that up to 22.86% coding gain can be achieved using the new coding scheme.
基金the National Natural Science Foundation of China(No.61890954)。
文摘Quality control is of vital importance in compressing three-dimensional(3D)medical imaging data.Optimal com-pression parameters need to be determined based on the specific quality requirement.In high efficiency video coding(HEVC),regarded as the state-of-the-art compression tool,the quantization parameter(QP)plays a dominant role in controlling quality.The direct application of a video-based scheme in predicting the ideal parameters for 3D medical image compression cannot guarantee satisfactory results.In this paper we propose a learning-based parameter prediction scheme to achieve efficient quality control.Its kernel is a support vector regression(SVR)based learning model that is capable of predicting the optimal QP from both vid-eo-based and structural image features extracted directly from raw data,avoiding time-consuming processes such as pre-encoding and iteration,which are often needed in existing techniques.Experimental results on several datasets verify that our approach outperforms current video-based quality control methods.