The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But th...The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.展开更多
In the background of signal detection for high frequency (I/F) radar, the sea clutter is quite significant and can mask some weak target signals. A new clutter rejection method named “nonlinear projection” is give...In the background of signal detection for high frequency (I/F) radar, the sea clutter is quite significant and can mask some weak target signals. A new clutter rejection method named “nonlinear projection” is given to improve the SNR of the target. This approach is based on the recent observation that HF sea clutter may be modeled as a nonlinear deterministic dynamical system. After approximating the multidimensional reconstruction of the clutter by a low-dimensional attractor, projections onto this attractor can separate the clutter from other components. Real sea clutter, simulated target data and real target data are used to show that a nonlinear clutter rejection method is a promising technique to suppress sea clutter and enhances target detection.展开更多
HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arriva...HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar. Key words HF ground wave radar - sea surface current - ESPRIT - MUSIC CLC number TN 911.72 - TN 958.95 Foundation item: Supported by the National Natural Science Foundation of China (60201003) and the National High Technology Development 863 Program of China (863-818-01-02)Biography: Liu Dan-hong (1976-), female, Master candidate, research direction: radar signal processing.展开更多
This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity det...This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.展开更多
Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler s...Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler spectrum, the low signal to clutter ratio (SCR) environment degrades the performance of signal process- ing algorithms. This paper addresses this challenging problem by using an S2-method and an adaptive clutter rejection scheme. The proposed S2-method improves the S-method by eliminating inter- ference between signals, and thus it enables multi-target signals to be reconstructed individually. The proposed adaptive clutter rejec- tion scheme is based on an adaptive notch filter, which is designed according to the envelop of the clutter spectrum. Experiments with simulated targets added into radar sea clutter echo and real air target data illustrate the effectiveness of the proposed method.展开更多
A credible method of calculating the detection threshold is presented for the multiple target situations, which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave...A credible method of calculating the detection threshold is presented for the multiple target situations, which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave radar. This method defines a whole-peak-outlier elimination (WPOE) criterion, which is based on in-peak-samples correlation of each target echo spectra, to trim off the target signals and abnormal disturbances with great amplitude from the complex spectra. Therefore, cleaned background noise samples are obtained to improve the accuracy and reliability of noise level estimation. When the background noise is nonhomogeneous, the detection samples are limited and often occupied heavily with outliers. In this case, the problem that the detection threshold is overvalued can be solved. In applications on experimental data, it is verified that this method can reduce the miss alarm rate of signal detection effectively in multiple target situations as well as make the adaptability of the detector better.展开更多
According to the characteristic of the echo of highfrequency ground wave radar(HF GWR), which is one-dimensional narrow band signal, a virtual direction of arrival(DOA) matrix is constructed at first, then the DOA...According to the characteristic of the echo of highfrequency ground wave radar(HF GWR), which is one-dimensional narrow band signal, a virtual direction of arrival(DOA) matrix is constructed at first, then the DOA of target evaluation is achieved by the method of resolving equations for two-dimensional DOA matrix. And this method bases on the redundancy information of a linear two-row array of antennae. Both the simulation process and the treatment results of measured data (in the case of low SNR echoes and short data series) are given at the end of this paper. By comparing with GPS data of the targets, the validity and practical applicability of the method in this paper is verified.展开更多
The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence a...The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.展开更多
The field of views of the Syowa East HF radar covers over Zhongshan Station (magnetic latitude ~ 74. 5°S). We examined the relation between HF radar signatures and optical aurora by using the data obtained on 3 A...The field of views of the Syowa East HF radar covers over Zhongshan Station (magnetic latitude ~ 74. 5°S). We examined the relation between HF radar signatures and optical aurora by using the data obtained on 3 Augusl 1997. A geomagnetic negative sudden impulse (SI- ) occurred at ~ 1432 UT on 3 August 1997associated with the sudden decrease of solar wind plasma density. From the behavior of the optical aurora observed by all-sky TV camera and scanning photometers at Zhongshan Station, a sudden enhancement of auroral emission intensity and poleward moving signature occurred associated with the negative SI. It is intcresting that the temporal and spatial variations of the HF radar backscatter power showed one to one correlations with optical aurora data. The details of this event are examined and compared with the data onboard WIND sate1lite and from ground based magnetometers.展开更多
Radio frequency interference (RFI) is a major problem in high-frequency (HF) radars. Conventional filtering-involved RFI suppression methods may introduce distortions to the target signals of interest and often de...Radio frequency interference (RFI) is a major problem in high-frequency (HF) radars. Conventional filtering-involved RFI suppression methods may introduce distortions to the target signals of interest and often demand extra hardware costs. In this paper, a novel method for RFI suppression by using linearly or randomly phase-modulated (PM) chirps is proposed, which enables independent analyses of the target signal and the RFI. Furthermore, the directions of arrival (DOA) of the interference are used as constraints to ensure a better DOA estimation of the target. The effectiveness of the method is demonstrated by numerical simulation results. The method can greatly improve the anti-interference capabilities of HF radars and is extremely applicable in the portable and low-cost radar systems.展开更多
Since 1958. I bave been doing research and teaching work at Harbin Polytechnic on the theories of radar,navigational guidance,and signal processing & information treatment by developing new radar systems. In 1979,...Since 1958. I bave been doing research and teaching work at Harbin Polytechnic on the theories of radar,navigational guidance,and signal processing & information treatment by developing new radar systems. In 1979, I went to England in the status of an honorary research fellow and stayed there for two years.probing into HF radar systems under the guidance of the world-famous British marine telemetrist Professor Shearman at Birmingham University.Here.I briefly展开更多
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
文摘The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.
文摘In the background of signal detection for high frequency (I/F) radar, the sea clutter is quite significant and can mask some weak target signals. A new clutter rejection method named “nonlinear projection” is given to improve the SNR of the target. This approach is based on the recent observation that HF sea clutter may be modeled as a nonlinear deterministic dynamical system. After approximating the multidimensional reconstruction of the clutter by a low-dimensional attractor, projections onto this attractor can separate the clutter from other components. Real sea clutter, simulated target data and real target data are used to show that a nonlinear clutter rejection method is a promising technique to suppress sea clutter and enhances target detection.
文摘HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar. Key words HF ground wave radar - sea surface current - ESPRIT - MUSIC CLC number TN 911.72 - TN 958.95 Foundation item: Supported by the National Natural Science Foundation of China (60201003) and the National High Technology Development 863 Program of China (863-818-01-02)Biography: Liu Dan-hong (1976-), female, Master candidate, research direction: radar signal processing.
基金supported by the National High Technology Research and Development Program of China (863 Program, No. 2002AA639480)the National Natural Science Foundation of China (No. 41067003)
文摘This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.
基金supported by the State Key Program of National Natural Science Foundation of China(61032011)
文摘Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler spectrum, the low signal to clutter ratio (SCR) environment degrades the performance of signal process- ing algorithms. This paper addresses this challenging problem by using an S2-method and an adaptive clutter rejection scheme. The proposed S2-method improves the S-method by eliminating inter- ference between signals, and thus it enables multi-target signals to be reconstructed individually. The proposed adaptive clutter rejec- tion scheme is based on an adaptive notch filter, which is designed according to the envelop of the clutter spectrum. Experiments with simulated targets added into radar sea clutter echo and real air target data illustrate the effectiveness of the proposed method.
文摘A credible method of calculating the detection threshold is presented for the multiple target situations, which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave radar. This method defines a whole-peak-outlier elimination (WPOE) criterion, which is based on in-peak-samples correlation of each target echo spectra, to trim off the target signals and abnormal disturbances with great amplitude from the complex spectra. Therefore, cleaned background noise samples are obtained to improve the accuracy and reliability of noise level estimation. When the background noise is nonhomogeneous, the detection samples are limited and often occupied heavily with outliers. In this case, the problem that the detection threshold is overvalued can be solved. In applications on experimental data, it is verified that this method can reduce the miss alarm rate of signal detection effectively in multiple target situations as well as make the adaptability of the detector better.
基金Supported by the National High Technology and Devel-opment Program of China (2001AA631050)
文摘According to the characteristic of the echo of highfrequency ground wave radar(HF GWR), which is one-dimensional narrow band signal, a virtual direction of arrival(DOA) matrix is constructed at first, then the DOA of target evaluation is achieved by the method of resolving equations for two-dimensional DOA matrix. And this method bases on the redundancy information of a linear two-row array of antennae. Both the simulation process and the treatment results of measured data (in the case of low SNR echoes and short data series) are given at the end of this paper. By comparing with GPS data of the targets, the validity and practical applicability of the method in this paper is verified.
文摘The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.
文摘The field of views of the Syowa East HF radar covers over Zhongshan Station (magnetic latitude ~ 74. 5°S). We examined the relation between HF radar signatures and optical aurora by using the data obtained on 3 Augusl 1997. A geomagnetic negative sudden impulse (SI- ) occurred at ~ 1432 UT on 3 August 1997associated with the sudden decrease of solar wind plasma density. From the behavior of the optical aurora observed by all-sky TV camera and scanning photometers at Zhongshan Station, a sudden enhancement of auroral emission intensity and poleward moving signature occurred associated with the negative SI. It is intcresting that the temporal and spatial variations of the HF radar backscatter power showed one to one correlations with optical aurora data. The details of this event are examined and compared with the data onboard WIND sate1lite and from ground based magnetometers.
文摘Radio frequency interference (RFI) is a major problem in high-frequency (HF) radars. Conventional filtering-involved RFI suppression methods may introduce distortions to the target signals of interest and often demand extra hardware costs. In this paper, a novel method for RFI suppression by using linearly or randomly phase-modulated (PM) chirps is proposed, which enables independent analyses of the target signal and the RFI. Furthermore, the directions of arrival (DOA) of the interference are used as constraints to ensure a better DOA estimation of the target. The effectiveness of the method is demonstrated by numerical simulation results. The method can greatly improve the anti-interference capabilities of HF radars and is extremely applicable in the portable and low-cost radar systems.
文摘Since 1958. I bave been doing research and teaching work at Harbin Polytechnic on the theories of radar,navigational guidance,and signal processing & information treatment by developing new radar systems. In 1979, I went to England in the status of an honorary research fellow and stayed there for two years.probing into HF radar systems under the guidance of the world-famous British marine telemetrist Professor Shearman at Birmingham University.Here.I briefly
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.