The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The e...The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The experimental data were correlated with two equations,a modified Antoine equation with the dissolved salt taken into account and a nonrandom two liquid-electrolyte(e-NRTL)model.Both models are in good agreement with the experimental data.This study provides essential physical data for further investigation of vapor-liquid equilibrium system containing salt.展开更多
As part of the study on thermophysical properties of HFC-134a,this paper concerns itself with vapor pressure of HFC-134a in the temperature range of 279.15K to 365.15K.A total of 43 measurement data were measured duri...As part of the study on thermophysical properties of HFC-134a,this paper concerns itself with vapor pressure of HFC-134a in the temperature range of 279.15K to 365.15K.A total of 43 measurement data were measured during the experiment which was conducted on a high precision PVTx test apparatus designed by the authors with slight modifications.Uncertainties of temperature was ±10mK and of pressure was ±500Pa.Purity of sample was either 99.95wt% or 99.98wt%.Data resulting from this experiment matched closely with the newest data published internationally.Compared to our proposed equation for calculating vapor pressure of HFC-134a, the RMS deviation of experimental data was only 0.0531%,showing relatively high precision.展开更多
Pentafluoroethane (HEC-125) and trifluoroiodomethane (CF3I) are considered as promising refrigerant alternatives, especially as components in mixtures, to replace CFCs or HCFCs. Effective uses of HFC-125 and CF3I requ...Pentafluoroethane (HEC-125) and trifluoroiodomethane (CF3I) are considered as promising refrigerant alternatives, especially as components in mixtures, to replace CFCs or HCFCs. Effective uses of HFC-125 and CF3I require that the thermophysical properties be accurately measured. In the present work, vapor pressure data of HFC-125 and CF3I have been measured in the temperature range from 292 to 337 K and 288 to 336 K, respectively. Maximum total pressure uncertainty of HEC-125 data is estimated to be within ±1.2 kPa and ±780 Pa for CF3I. Based on the data set and literature values, the vapor pressure equations for HEC-125 and CF3I have been developed. The relative deviation of the equations correlate the measurements within 0.022% for HEC-125 and 0.068% for CF3I, respectively.展开更多
Based on results of saturated vapor pressures of pure substances calculated by SRK equation of state, the factor a in attractive pressure term was modified. Vapor-liquid equilibria of mixtures were calculated by origi...Based on results of saturated vapor pressures of pure substances calculated by SRK equation of state, the factor a in attractive pressure term was modified. Vapor-liquid equilibria of mixtures were calculated by original and modified SRK equation of state combined with MHV1 mixing rule and UNIFAC model, respectively. For 1447 saturated pressure points of 37 substance including alkanes; organics containing chlorine, fluorine, and oxygen; inorganic gases and water, the original SRK equation of state predicted pressure with an average deviation of 2.521% and modified one 1.673%. Binary vapor-liquid equilibria of alcohols containing mixtures and water containing mixtures also indicated that the SRK equation of state with the modified a had a better precision than that with the original one.展开更多
A new approach to the investigation of vdW type of equations of state (EOS) is developed by embedding a vapor pressure equation and a saturated liquid volume equation into vdW type EOS, which results in a new function...A new approach to the investigation of vdW type of equations of state (EOS) is developed by embedding a vapor pressure equation and a saturated liquid volume equation into vdW type EOS, which results in a new function AS(T). The AS(T) possesses the properties of an attractive parameter A(T), and if an EOS is accurate in the whole PVT space, then its numerical value equals A(T). As a useful tool for investigating EOS, the As(T) has been used to make comparisons among RKS, PRSVII, PT and ALS EOS, and to indicate where the shortcomings of the EOS are coming from. Based on the AS(T), a possible way to develop a real predictive equation of state is also suggested.展开更多
At present, in numerical weather prediction models (e. g. [1] ), general circulation or climate models (e. g. [2, 3] ) or meso-scale models (e. g. [4, 5] ), the influence of the water vapor source/sink term (WVST) in ...At present, in numerical weather prediction models (e. g. [1] ), general circulation or climate models (e. g. [2, 3] ) or meso-scale models (e. g. [4, 5] ), the influence of the water vapor source/sink term (WVST) in the continuity equation (CE) of moist air has not been taken into account generally. Though Hansen et al. listed source and sink terms in the CE ( Eq. T2 ), they still neglected these terms in the approximate form employed in computations ( Eq. T6 ). In the real atmosphere there exist condensation and evaporation, sometimes strong condensation. In this note the role of the WVSTs in the CE and its related equations of numerical models and their influences on forecast results are discussed.展开更多
为分析SF_6/CF_4混合气体的饱和蒸气压与绝缘特性,进而探讨SF_6/CF_4混合气体替代SF_6气体应用于高寒地区的可行性。首先,采用全局最优化算法拟合得到了SF_6和CF_4的Antoine特性常数,然后通过Antoine蒸汽压方程和汽液平衡基本定律相结合...为分析SF_6/CF_4混合气体的饱和蒸气压与绝缘特性,进而探讨SF_6/CF_4混合气体替代SF_6气体应用于高寒地区的可行性。首先,采用全局最优化算法拟合得到了SF_6和CF_4的Antoine特性常数,然后通过Antoine蒸汽压方程和汽液平衡基本定律相结合,计算了SF_6/CF_4混合气体的饱和蒸气压特性。然后,基于Boltzmann解析法获得了SF_6/CF_4混合气体的临界击穿场强数据。最后,综合SF_6/CF_4混合气体的饱和蒸气压特性与临界击穿场强数据,讨论了SF_6/CF_4混合气体的绝缘特性及在高寒地区应用的可行性。结果表明:在低温条件下,SF_6/CF_4混合气体所允许的压力明显高于纯SF_6,从而可以获得较纯SF_6更高的绝缘强度,如–40℃时摩尔分数50%SF_6/50%CF_4混合气体和SF_6气体的饱和蒸气压分别约为0.64 MPa和0.35 MPa,相应压力下的临界击穿场强分别约为43.5 k V/mm和31.34 k V/mm,即50%SF_6/50%CF_4混合气体的绝缘强度可以达到纯SF_6气体的1.4倍,说明SF_6/CF_4混合气体采用恰当的混合比例和充气压力能够有效解决SF_6在高寒地区的液化问题。展开更多
文摘The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The experimental data were correlated with two equations,a modified Antoine equation with the dissolved salt taken into account and a nonrandom two liquid-electrolyte(e-NRTL)model.Both models are in good agreement with the experimental data.This study provides essential physical data for further investigation of vapor-liquid equilibrium system containing salt.
文摘As part of the study on thermophysical properties of HFC-134a,this paper concerns itself with vapor pressure of HFC-134a in the temperature range of 279.15K to 365.15K.A total of 43 measurement data were measured during the experiment which was conducted on a high precision PVTx test apparatus designed by the authors with slight modifications.Uncertainties of temperature was ±10mK and of pressure was ±500Pa.Purity of sample was either 99.95wt% or 99.98wt%.Data resulting from this experiment matched closely with the newest data published internationally.Compared to our proposed equation for calculating vapor pressure of HFC-134a, the RMS deviation of experimental data was only 0.0531%,showing relatively high precision.
文摘Pentafluoroethane (HEC-125) and trifluoroiodomethane (CF3I) are considered as promising refrigerant alternatives, especially as components in mixtures, to replace CFCs or HCFCs. Effective uses of HFC-125 and CF3I require that the thermophysical properties be accurately measured. In the present work, vapor pressure data of HFC-125 and CF3I have been measured in the temperature range from 292 to 337 K and 288 to 336 K, respectively. Maximum total pressure uncertainty of HEC-125 data is estimated to be within ±1.2 kPa and ±780 Pa for CF3I. Based on the data set and literature values, the vapor pressure equations for HEC-125 and CF3I have been developed. The relative deviation of the equations correlate the measurements within 0.022% for HEC-125 and 0.068% for CF3I, respectively.
文摘Based on results of saturated vapor pressures of pure substances calculated by SRK equation of state, the factor a in attractive pressure term was modified. Vapor-liquid equilibria of mixtures were calculated by original and modified SRK equation of state combined with MHV1 mixing rule and UNIFAC model, respectively. For 1447 saturated pressure points of 37 substance including alkanes; organics containing chlorine, fluorine, and oxygen; inorganic gases and water, the original SRK equation of state predicted pressure with an average deviation of 2.521% and modified one 1.673%. Binary vapor-liquid equilibria of alcohols containing mixtures and water containing mixtures also indicated that the SRK equation of state with the modified a had a better precision than that with the original one.
文摘A new approach to the investigation of vdW type of equations of state (EOS) is developed by embedding a vapor pressure equation and a saturated liquid volume equation into vdW type EOS, which results in a new function AS(T). The AS(T) possesses the properties of an attractive parameter A(T), and if an EOS is accurate in the whole PVT space, then its numerical value equals A(T). As a useful tool for investigating EOS, the As(T) has been used to make comparisons among RKS, PRSVII, PT and ALS EOS, and to indicate where the shortcomings of the EOS are coming from. Based on the AS(T), a possible way to develop a real predictive equation of state is also suggested.
基金Project supported by the National Major Project of Science and Technology 75-09-01.
文摘At present, in numerical weather prediction models (e. g. [1] ), general circulation or climate models (e. g. [2, 3] ) or meso-scale models (e. g. [4, 5] ), the influence of the water vapor source/sink term (WVST) in the continuity equation (CE) of moist air has not been taken into account generally. Though Hansen et al. listed source and sink terms in the CE ( Eq. T2 ), they still neglected these terms in the approximate form employed in computations ( Eq. T6 ). In the real atmosphere there exist condensation and evaporation, sometimes strong condensation. In this note the role of the WVSTs in the CE and its related equations of numerical models and their influences on forecast results are discussed.
文摘为分析SF_6/CF_4混合气体的饱和蒸气压与绝缘特性,进而探讨SF_6/CF_4混合气体替代SF_6气体应用于高寒地区的可行性。首先,采用全局最优化算法拟合得到了SF_6和CF_4的Antoine特性常数,然后通过Antoine蒸汽压方程和汽液平衡基本定律相结合,计算了SF_6/CF_4混合气体的饱和蒸气压特性。然后,基于Boltzmann解析法获得了SF_6/CF_4混合气体的临界击穿场强数据。最后,综合SF_6/CF_4混合气体的饱和蒸气压特性与临界击穿场强数据,讨论了SF_6/CF_4混合气体的绝缘特性及在高寒地区应用的可行性。结果表明:在低温条件下,SF_6/CF_4混合气体所允许的压力明显高于纯SF_6,从而可以获得较纯SF_6更高的绝缘强度,如–40℃时摩尔分数50%SF_6/50%CF_4混合气体和SF_6气体的饱和蒸气压分别约为0.64 MPa和0.35 MPa,相应压力下的临界击穿场强分别约为43.5 k V/mm和31.34 k V/mm,即50%SF_6/50%CF_4混合气体的绝缘强度可以达到纯SF_6气体的1.4倍,说明SF_6/CF_4混合气体采用恰当的混合比例和充气压力能够有效解决SF_6在高寒地区的液化问题。