根据ASTME681-04及ANSI/ASHRAE Standard 34-2007标准,建立了一套全自动可燃性气体爆炸极限实验系统.该系统实际配气比例与设定比例的误差不超过±0.1%,配气比例的不确定度小于0.5%.对几种常见制冷剂的爆炸极限进行了测试,验证了系...根据ASTME681-04及ANSI/ASHRAE Standard 34-2007标准,建立了一套全自动可燃性气体爆炸极限实验系统.该系统实际配气比例与设定比例的误差不超过±0.1%,配气比例的不确定度小于0.5%.对几种常见制冷剂的爆炸极限进行了测试,验证了系统的准确性.对二甲醚/HFC125混合气体的爆炸极限进行了实验研究,结果表明,加入HFC125后二甲醚的可燃性范围减小,当HFC125与二甲醚的体积比为4.6时达到临界抑爆点,但HFC125含量较低时对二甲醚的阻燃作用不明显.该测试结果为将二甲醚作为一种环保型制冷剂进行推广应用提供了安全参考.展开更多
To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is car...To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is carried out experimentally.It is found that there is a top value of the coefficient of performance(COP)when the system runs at 95 Hz of frequency.The relationships between the COP and compressor frequency,condensation pressure,evaporation pressure,condensation water temperature rise,and discharge temperature are discussed and analyzed at 95 Hz.And the COP of the HFC125 transcritical cycle is also compared with that of a R410 subcritical heat pump under the same conditions.The results indicate that there exists an optimum frequency for a better COP,and the system COP shows an increasing tendency with the decrease in condensation pressure and compressor ratio while the evaporation pressure remains invariant,and the COP decreases rapidly when cooling water temperature rises over 47.5 ℃.Compared with the R410A sub-critical cycle,the COP of HFC125 transcritical cycle significantly increases by 12% on average.展开更多
文摘根据ASTME681-04及ANSI/ASHRAE Standard 34-2007标准,建立了一套全自动可燃性气体爆炸极限实验系统.该系统实际配气比例与设定比例的误差不超过±0.1%,配气比例的不确定度小于0.5%.对几种常见制冷剂的爆炸极限进行了测试,验证了系统的准确性.对二甲醚/HFC125混合气体的爆炸极限进行了实验研究,结果表明,加入HFC125后二甲醚的可燃性范围减小,当HFC125与二甲醚的体积比为4.6时达到临界抑爆点,但HFC125含量较低时对二甲醚的阻燃作用不明显.该测试结果为将二甲醚作为一种环保型制冷剂进行推广应用提供了安全参考.
基金The National Natural Science Foundation of China(No.50676059)
文摘To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is carried out experimentally.It is found that there is a top value of the coefficient of performance(COP)when the system runs at 95 Hz of frequency.The relationships between the COP and compressor frequency,condensation pressure,evaporation pressure,condensation water temperature rise,and discharge temperature are discussed and analyzed at 95 Hz.And the COP of the HFC125 transcritical cycle is also compared with that of a R410 subcritical heat pump under the same conditions.The results indicate that there exists an optimum frequency for a better COP,and the system COP shows an increasing tendency with the decrease in condensation pressure and compressor ratio while the evaporation pressure remains invariant,and the COP decreases rapidly when cooling water temperature rises over 47.5 ℃.Compared with the R410A sub-critical cycle,the COP of HFC125 transcritical cycle significantly increases by 12% on average.