采用量子化学ab initio HF方法,在6-31G(d)基组水平卜,对水杨醛缩乙二胺类双席夫碱及其Ni配合物体系进行几何构型优化.以优化的稳定构型为基础,利用INDO/CI方法计算体系的电子光谱,同时用ZINDO-SOS方法给出该系列分子二阶(βij...采用量子化学ab initio HF方法,在6-31G(d)基组水平卜,对水杨醛缩乙二胺类双席夫碱及其Ni配合物体系进行几何构型优化.以优化的稳定构型为基础,利用INDO/CI方法计算体系的电子光谱,同时用ZINDO-SOS方法给出该系列分子二阶(βijk)和三阶(γijk)非线性光学系数.计算结果表明,共轭性增强有助于增大分子的二阶及三阶非线性光学系数,双席夫碱化合物1的β和γ值分别为35.54×10^-30和-1.20×10^-34 esu,而共轭桥为萘环的化合物4的β和γ值分别为54.22×10^-30和2.00×10^-34 esu,端部引入苯并环的化合物5的β和γ值增加幅度更大.对应的金属Ni(Ⅱ)配合物的β值增加较明显,为配体的1.7~10.8倍,γ值也有不同程度的增加.展开更多
本文通过前线轨道理论和ab initio HF 计算方法,对不同种类的氢与不同BN/C相之间的反应性进行了比较。结果表明原子氢与sp2-C相的反应性高过其与sp3-C相的反应性,从而说明在CVD技术中原子氢有对C相的选择腐蚀性;在氢与BN相的反应中,原...本文通过前线轨道理论和ab initio HF 计算方法,对不同种类的氢与不同BN/C相之间的反应性进行了比较。结果表明原子氢与sp2-C相的反应性高过其与sp3-C相的反应性,从而说明在CVD技术中原子氢有对C相的选择腐蚀性;在氢与BN相的反应中,原子氢没有类似的选择腐蚀性;相对于中性氢而言离子氢具有较高的反应性。展开更多
文摘采用量子化学ab initio HF方法,在6-31G(d)基组水平卜,对水杨醛缩乙二胺类双席夫碱及其Ni配合物体系进行几何构型优化.以优化的稳定构型为基础,利用INDO/CI方法计算体系的电子光谱,同时用ZINDO-SOS方法给出该系列分子二阶(βijk)和三阶(γijk)非线性光学系数.计算结果表明,共轭性增强有助于增大分子的二阶及三阶非线性光学系数,双席夫碱化合物1的β和γ值分别为35.54×10^-30和-1.20×10^-34 esu,而共轭桥为萘环的化合物4的β和γ值分别为54.22×10^-30和2.00×10^-34 esu,端部引入苯并环的化合物5的β和γ值增加幅度更大.对应的金属Ni(Ⅱ)配合物的β值增加较明显,为配体的1.7~10.8倍,γ值也有不同程度的增加.
文摘本文通过前线轨道理论和ab initio HF 计算方法,对不同种类的氢与不同BN/C相之间的反应性进行了比较。结果表明原子氢与sp2-C相的反应性高过其与sp3-C相的反应性,从而说明在CVD技术中原子氢有对C相的选择腐蚀性;在氢与BN相的反应中,原子氢没有类似的选择腐蚀性;相对于中性氢而言离子氢具有较高的反应性。