The high harmonic generation(HHG)by few-cycle laser pulses is essential for research in strong-field solid-state physics.Through comparison of high harmonic spectra of solids generated by laser pulses with varying dur...The high harmonic generation(HHG)by few-cycle laser pulses is essential for research in strong-field solid-state physics.Through comparison of high harmonic spectra of solids generated by laser pulses with varying durations,we discovered that lasers with good dispersion compensation are capable of producing a broad spectrum of high harmonics.As the pulse duration is further compressed,several interference peaks appear in the broad spectrum.Moreover,we conducted simulations using the semiconductor Bloch equation,considering the effect of Berry curvature,to better understand this process.Our work provides a valuable approach for studying HHG by few-cycle laser pulses in solid materials,expanding the application of HHG in attosecond physics.展开更多
We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction,...We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.展开更多
Using nonperturbative quantum electrodynamics, we develop a scattering theory for high harmonic generation (HHG). A transition rate formula for HHG is obtained. Applying this formula, we cal- culate the spectra of h...Using nonperturbative quantum electrodynamics, we develop a scattering theory for high harmonic generation (HHG). A transition rate formula for HHG is obtained. Applying this formula, we cal- culate the spectra of high harmonics generated from different noble gases shined by strong laser light. We study the cutoff property of the spectra. The data show that the cutoff orders of high harmonics are greater than that predicted by the "3.17" cutoff law. As a numerical experiment, the data obtained from our repeated calculations support the newly derived theoretical expression of the cutoff law. The cutoff energy of high harmonics described by the new cutoff law, in terms of the ponderomotive energy Up and the ionization potential energy Ip, is 3.34Up 1.83Ip. The higher cutoff orders predicted by this theory are due to the absorption of the extra photons, which participate only the photon-mode up-conversion and do nothing in the photoionization process.展开更多
We propose a theoretical scheme to generate a broadband supercontinuum using a modulated chirped polarization gating technique. By this technique, a broadband continuum of 155 eV can be obtained at microscopic level. ...We propose a theoretical scheme to generate a broadband supercontinuum using a modulated chirped polarization gating technique. By this technique, a broadband continuum of 155 eV can be obtained at microscopic level. The modulations on the supercontinuum can be eliminated after propagation. Then a smooth broadband supercontinuum with the bandwidth of 155 eV can be generated. As a result, isolated sub-100-attosecond pulses with tunable central wavelengths could be obtained straightforwardly. Our simulations also reveal that an isolated attosecond pulse can still be generated by using multicycle driving laser pulses, and the central wave- length of isolated attosecond pulse can be controlled by adjusting the delay rj (ra is the delay of the two counter-rotating circularly polarized pulses.).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91850209 and 11974416)。
文摘The high harmonic generation(HHG)by few-cycle laser pulses is essential for research in strong-field solid-state physics.Through comparison of high harmonic spectra of solids generated by laser pulses with varying durations,we discovered that lasers with good dispersion compensation are capable of producing a broad spectrum of high harmonics.As the pulse duration is further compressed,several interference peaks appear in the broad spectrum.Moreover,we conducted simulations using the semiconductor Bloch equation,considering the effect of Berry curvature,to better understand this process.Our work provides a valuable approach for studying HHG by few-cycle laser pulses in solid materials,expanding the application of HHG in attosecond physics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 110775069, 91026021, 11075068 and 10875054)the Fundamental Research Funds for the Central Universities (Grant No.lzujbky-2010-k08)the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education
文摘We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.
文摘Using nonperturbative quantum electrodynamics, we develop a scattering theory for high harmonic generation (HHG). A transition rate formula for HHG is obtained. Applying this formula, we cal- culate the spectra of high harmonics generated from different noble gases shined by strong laser light. We study the cutoff property of the spectra. The data show that the cutoff orders of high harmonics are greater than that predicted by the "3.17" cutoff law. As a numerical experiment, the data obtained from our repeated calculations support the newly derived theoretical expression of the cutoff law. The cutoff energy of high harmonics described by the new cutoff law, in terms of the ponderomotive energy Up and the ionization potential energy Ip, is 3.34Up 1.83Ip. The higher cutoff orders predicted by this theory are due to the absorption of the extra photons, which participate only the photon-mode up-conversion and do nothing in the photoionization process.
基金supported by the National Natural Science Foundation of China (Grant Nos.91026021,11075068,10875054,11175076 and 10975065)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2010-k08)Scholarship Award for Excellent Doctoral Students Granted by Ministry of Education
文摘We propose a theoretical scheme to generate a broadband supercontinuum using a modulated chirped polarization gating technique. By this technique, a broadband continuum of 155 eV can be obtained at microscopic level. The modulations on the supercontinuum can be eliminated after propagation. Then a smooth broadband supercontinuum with the bandwidth of 155 eV can be generated. As a result, isolated sub-100-attosecond pulses with tunable central wavelengths could be obtained straightforwardly. Our simulations also reveal that an isolated attosecond pulse can still be generated by using multicycle driving laser pulses, and the central wave- length of isolated attosecond pulse can be controlled by adjusting the delay rj (ra is the delay of the two counter-rotating circularly polarized pulses.).