The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met...The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.展开更多
In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occu...In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.展开更多
文摘The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.
基金Supported by National Natural Science Foundation of China(Grant No.51375467)Quality Inspection of Public Welfare Industry Research Projects,China(Grant No.201410009)
文摘In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.