To prepare HIV-1 Vif and hAPOBEC3G and to produce their antibodies, the full length gene fragment of HIV-1 vif was amplified by PCR from a plasmid of HIV-1 NL4.3 cDNA, and the APOBEC3G gene was obtained by RT-PCR from...To prepare HIV-1 Vif and hAPOBEC3G and to produce their antibodies, the full length gene fragment of HIV-1 vif was amplified by PCR from a plasmid of HIV-1 NL4.3 cDNA, and the APOBEC3G gene was obtained by RT-PCR from the total RNA of H9 cells. The resulting DNA construct was cloned into a prokaryotic expression vector (pET-32a). Recombinant pET-vif and pET-APOBEC3G were expressed respectively in Eserichia coli BL21 (DE3) as an insoluble protein. The vector also contained a six-histidine tag at the C-terminus for convenient purification and detection. To express and purify the HIV-1 Vif and hAPOBEC3G in E.coli cells, the accuracy of inserted gene and specificity of proteins were detected by the two enzyme digestion method, SDS-PAGE, and Western blotting. Rabbits were then immunized by Vif or APOBEC3G protein and serum samples were tested by indirect ELISA to determine the level of antibodies. Immunoenzyme and immunofluorescence assays were performed to identify the specificity of polyclonal antibodies. The titer of the anti-Vif antibodies was 1:204800, and that of the anti-APOBEC3G antibodies was 1:102400. Thus the antibodies could detect the antigen expression in the cells, demonstrating that fusion proteins with high purity and their corresponding polyclonal antibodies with high titer and specificity were achieved.展开更多
Objective- To compare the consistency of the results from detecting HIV-1 antibody in the paired urine and serum specimens from drug users by ELISA. Methods: The paired urine and serum specimens from 273 drug users de...Objective- To compare the consistency of the results from detecting HIV-1 antibody in the paired urine and serum specimens from drug users by ELISA. Methods: The paired urine and serum specimens from 273 drug users detained at a detoxification unit were collected, and the HIV-1 antibodies in the specimens of them were screened by urine and serum ELISA kits, respectively. Results: Of 273 serum specimens, 94 ones showed positive reaction and among 94 counterpart urine specimens, 93 ones also appeared positive reaction. Taking the results together,the consistent rate of HIV-1 antibody screened by urine and serum ELISA kits was 99.6%. Conclusion: The urine ELISA kit, which screened HIV-1 antibody of urine showing almost the same results tested by serum ELISA kit, is reliable. It is proposed that urine ELISA be introduced in many fields.展开更多
HIV-1 p24 detection provides a means to aid the early diagnosis of HIV-1 infection, track the progression of disease and assess the efficacy of antiretroviral therapy. In the present study, three monoclonal antibodies...HIV-1 p24 detection provides a means to aid the early diagnosis of HIV-1 infection, track the progression of disease and assess the efficacy of antiretroviral therapy. In the present study, three monoclonal antibodies (mAbs) p3JB9, p5F1 and p6F4 against HIV-1 p24 were generated. All mAbs could detect p24 of HIV-1ⅢB, HIV-1Ada-M, HIV-174v mAbs p5F1 and p6F4 could detect HIV-1KM018, while p3JB9 could not. Three mAbs did not react with HIV-2ROD, HIV-2CBL-20 and SIVagmTYO-1. The recognized epitope of p5F1 was located on the Gag amino acid region DCKTILKALGPAATLEEMMTAC. The p5F1 was used to establish a modified sandwich ELISA with rabbit anti-p24 serum and showed good specificity and high sensitivity, which has been used to measure HIV-1 p24 antigen levels in research. Cellular & Molecular Immunology.展开更多
Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I(HIV-1)through antiretroviral therapy.However,vaccine development has remained challengin...Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I(HIV-1)through antiretroviral therapy.However,vaccine development has remained challenging.Recent discoveries in broadly neutralizing monoclonal antibodies(bNAbs)has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response.Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein(Env)during infection.Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.展开更多
The cure or functional cure of the"Berlin patient"and"London patient"indicates that infusion of HIV-resistant cells could be a viable treatment strategy.Very recently,we genetically linked a short-...The cure or functional cure of the"Berlin patient"and"London patient"indicates that infusion of HIV-resistant cells could be a viable treatment strategy.Very recently,we genetically linked a short-peptide fusion inhibitor with a glycosylphosphatidylinositol(GPI)attachment signal,rendering modified cells fully resistant to HIV infection.In this study,GPI-anchored m36.4,a single-domain antibody(nanobody)targeting the coreceptor-binding site of gp120,was constructed with a lentiviral vector.We verified that m36.4 was efficiently expressed on the plasma membrane of transduced TZM-bl cells and targeted lipid raft sites without affecting the expression of HIV receptors(CD4,CCR5,and CXCR4).Significantly,TZM-bl cells expressing GPI-m36.4 were highly resistant to infection with divergent HIV-1 subtypes and potently blocked HIV-1 envelope-mediated cell-cell fusion and cell-cell viral transmission.Furthermore,we showed that GPI-m36.4-modified human CEMss-CCR5 cells were nonpermissive to both CCR5-and CXCR4-tropic HIV-1 isolates and displayed a strong survival advantage over unmodified cells.It was found that GPI-m36.4 could also Impair HIV-1 Env processing and viral infectivity in transduced cells,underlying a multifaceted mechanism of antiviral action.In conclusion,our studies characterize m36.4 as a powerful nanobody that can generate HIV-resistant cells,offering a novel gene therapy approach that can be used alone or in combination.展开更多
Some monoclonal antibodies (mAbs) could inhibit infection by HIV-1. In this study, four mAbs against HIV-1 gp41 were prepared in mice. All four mAbs could bind to the recombinant soluble gp41 and recognize the nativ...Some monoclonal antibodies (mAbs) could inhibit infection by HIV-1. In this study, four mAbs against HIV-1 gp41 were prepared in mice. All four mAbs could bind to the recombinant soluble gp41 and recognize the native envelope glycoprotein gp160 expressed on the HIV-Env^+ CHO-WT cell in flow cytometry analysis. Interestingly, the results show that all four mAbs purified by affinity chromatography could inhibit HIV-1 Env-mediated membrane fusion (syncytium formation) by 40%-60% at 10 μg/mL, which implies potential inhibitory activities against HIV-1.展开更多
The epitope ELDKWA, which is located in the membrane-proximal external region (MPER) of HIV-1 gp41, is an important neutralizing epitope. The human monoclonal antibody (mAb) 2F5 against this epitope shows broad ne...The epitope ELDKWA, which is located in the membrane-proximal external region (MPER) of HIV-1 gp41, is an important neutralizing epitope. The human monoclonal antibody (mAb) 2F5 against this epitope shows broad neutralizing activity toward many HIV strains. However, several reports have shown that the epitope-specific mAbs induced by peptides containing MPER did not exhibit the same neutralizing activities as human mAb 2F5. In this study, four ELDKWA epitope specific mAbs (9E7, 7E10, 6B5, and 2B4) induced by immunization with the ELDKWA epitope in varied molecular contexts, all showed inhibitory activi- ties with different potencies in HIV-1 Env-mediated membrane fusion assays and pseudovirus neutralization assays. This result indicates that though these antibodies recognize the epitope ELDKWA, their characteri- zations differ from that of neutralizing antibodies, implying that the neutralizing mAbs can be induced but also need to be screened, and the protective ability of a related vaccine antigen depends on the concentra- tion of the neutralizing mAbs in the induced polyclonal antibodies.展开更多
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target f...The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.展开更多
A seven-amino acid epitope GPGRAFY at the tip of the V3 loop in HIV-1 gp120 is the principal neutralizing epitope, and a subset of anti-V3 antibodies specific for this epitope shows a broad range of neu-tralizing acti...A seven-amino acid epitope GPGRAFY at the tip of the V3 loop in HIV-1 gp120 is the principal neutralizing epitope, and a subset of anti-V3 antibodies specific for this epitope shows a broad range of neu-tralizing activity. GPGRAFY-epitope-specific neutralizing antibodies were produced using predefined GPGRAFY-epitope-specific peptides instead of a natural or recombinant gp120 bearing this epitope. All six monoclonal antibodies (mAbs) could recognize the GPGRAFY-epitope on peptides and two of the antibod-ies, 9D8 and 2D7, could recognize recombinant gp120 in enzymelinked immunosorkentassy (ELISA) as-says. In the flow cytometry analysis, the mAbs 9D8 and 2D7 could bind to HIV-Env+ CHO-WT cells and the specific bindings could be inhibited by the GPGRAFY-epitope peptide, which suggests that these two mAbs could recognize the native envelope protein gp120 expressed on the cell membrane. However, in syncytium assays, none of the mAbs was capable of inhibiting HIV-Env-mediated cell membrane fusion. The different activities for recognizing native HIV-1 gp120 might be associated with different antibody affinities against the epitopes. The development of conformational mimics of the neutralization epitope in the gp120 V3 loop could elicit neutralizing mAbs with high affinity.展开更多
Simpli RED HIV-1 antibody test was used to detect 17,378 samples from people of entering coutry. 10 samples were positive. Using Western Blot as the cofirmatory test, 8/10 was positive. The advantages of this test was...Simpli RED HIV-1 antibody test was used to detect 17,378 samples from people of entering coutry. 10 samples were positive. Using Western Blot as the cofirmatory test, 8/10 was positive. The advantages of this test was very sensitive, quick and easy. 20 ul whole blood could be used as sample and got the results in two minutes.展开更多
The complement system,a key component of innate immunity,is a first-line defender against foreign pathogens such as HIV-1.The role of the complement system in HIV-1 pathogenesis appears to be multifaceted.Although the...The complement system,a key component of innate immunity,is a first-line defender against foreign pathogens such as HIV-1.The role of the complement system in HIV-1 pathogenesis appears to be multifaceted.Although the complement system plays critical roles in clearing and neutralizing HIV-1 virions,it also represents a critical factor for the spread and maintenance of the virus in the infected host.In addition,complement regulators such as human CD59 present in the envelope of HIV-1 prevent complement-mediated lysis of HIV-1.Some novel approaches are proposed to combat HIV-1 infection through the enhancement of antibody-dependent complement activity against HIV-1.In this paper,we will review these diverse roles of complement in HIV-1 infection.展开更多
VRC01, a broadly neutralizing monoclonal antibody (bnmAb), can neutralize a diverse array of HIV-1 isolates by mimicking CD4 binding to the envelope glycoprotein gpl20. We have previously demonstrated the presence o...VRC01, a broadly neutralizing monoclonal antibody (bnmAb), can neutralize a diverse array of HIV-1 isolates by mimicking CD4 binding to the envelope glycoprotein gpl20. We have previously demonstrated the presence of VRC01-resistant strains in an HIV-1 infected patient during antiretroviral therapy. Here, we report follow-up studies of two subsequent samples from the same patient. With genetic and phenotypic analysis of over 70 full-length molecular clones of the HIV-1 envelope, we show that VRC01-resistant HIV-1 continued to exist and change in its proportion of the infecting virus during treatment with a highly active antiretroviral therapy. Consistent with our previous observation, the resistant phenotype was associated with a single asparagine residue at position 460 (N460), a potential N-linked glycosylation site in the V5 region. The persistence and continuing evolution of VRC01-resistant HIV-1 in vivo presents a great challenge to our future preventative and therapeutic interventions based on VRC01.展开更多
Advancements in high-throughput sequencing(HTS)of antibody repertoires(Ig-Seq)have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale.However,currently,only a few studies ex...Advancements in high-throughput sequencing(HTS)of antibody repertoires(Ig-Seq)have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale.However,currently,only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions,possibly limited by inadequate sequencing depth and throughput.To better understand how HIV-1 infection would impact humoral immune system,in this study,we systematically analyzed the differences between the IgM(HIV-IgM)and IgG(HIV-IgG)heavy chain repertoires of HIV-1 infected patients,as well as between antibody repertoires of HIV-1 patients and healthy donors(HH).Notably,the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries,and the diversity of unique clones in HIV-IgG remarkably reduced.In aspect of somatic mutation rates of CDR1 and CDR2,the HIV-IgG repertoire was higher than HIV-IgM.Besides,the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire,presumably caused by the great number of novel VDJ rearrangement patterns,especially a massive use of IGHJ6.Moreover,some of the B cell clonotypes had numerous clones,and somatic variants were detected within the clonotype lineage in HIV-IgG,indicating HIV-1 neutralizing activities.The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies.展开更多
HIV-1-specific cytotoxic T lymphocytes(CTLs) and neutralizing antibodies(NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Her...HIV-1-specific cytotoxic T lymphocytes(CTLs) and neutralizing antibodies(NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Here, using an in vitro model involving autologous CD4+ T cells,primary HIV-1 isolates, HIV-1-specific CTLs, and neutralizing monoclonal antibodies, we show that b12, a potent and broadly neutralizing monoclonal antibody to HIV-1, was able to block viral infection when preincubated with virus prior to infection, but was much less effective than CTLs at limiting virus replication when added to infected cell cultures. However, the same neutralizing antibody was able to contain viruses by antibody-dependent cell-mediated virus inhibition in vitro,which was mediated by natural killer cells(NKs) and dependent on an Fc-Fc receptor interaction.Meanwhile, bulk CTLs from HIV-1 controllers were more effective in suppression of virus replication than those from progressors. These findings indicate that control of HIV-1 replication in activated CD4^+ T cells is ineffectively mediated by neutralizing antibodies alone, but that both CTLs and antibody-dependent NK-mediated immune mechanisms contribute to viral containment. Our study systemically compared three major players in controlling HIV-1 infection, CTLs, NAbs, and NKs, in an autologous system and highlighted the multifactorial mechanisms for viral containment and vaccine success.展开更多
Raising a heterologous tier 2 neutralizing antibody(nAb)response remains a daunting task for HIV vaccine development.In this study,we explored the utility of diverse HIV-1 envelope(Env)immunogens in a sequential immun...Raising a heterologous tier 2 neutralizing antibody(nAb)response remains a daunting task for HIV vaccine development.In this study,we explored the utility of diverse HIV-1 envelope(Env)immunogens in a sequential immunization scheme as a solution to this task.This exploration stemmed from the rationale that gp145,a membrane-bound truncation form of HIV Env,may facilitate the focusing of induced antibody response on neutralizing epitopes when sequentially combined with the soluble gp140 form as immunogens in a prime-boost mode.We first showed that gp140 DNA prime-gp145 Tiantan vaccinia(TV)boost likely represents a general format for inducing potent nAb response in mice.However,when examined in rhesus macaque,this modality showed little effectiveness.To improve the efficacy,we extended the original modality by adding a strong protein boost,namely native-like SOSIP.664 trimer displayed on ferritin-based nanoparticle(NP),which was generated by a newly developed click approach.The resulting three-immunization regimen succeeded in eliciting tier-2 nAb response with substantial breadth when implemented in rhesus macaque over a short 8-week schedule.Importantly,the elicited nAb response was able to effectively contain viremia upon a heterologous SHIV challenge.Collectively,our studies highlighted that diversification of Env immunogens,in both types and formulations,under the framework of a sequential immunization scheme might open new opportunity toward HIV vaccine development.展开更多
基金National Natural Science Foundation ofChina(30400368)The Natural Science foundation ofBeijing(5072003)Beijing Natural Science foundationProgram and Scientific Research Key Program of BeijingMunicipal commission of Education(KZ20051005001).
文摘To prepare HIV-1 Vif and hAPOBEC3G and to produce their antibodies, the full length gene fragment of HIV-1 vif was amplified by PCR from a plasmid of HIV-1 NL4.3 cDNA, and the APOBEC3G gene was obtained by RT-PCR from the total RNA of H9 cells. The resulting DNA construct was cloned into a prokaryotic expression vector (pET-32a). Recombinant pET-vif and pET-APOBEC3G were expressed respectively in Eserichia coli BL21 (DE3) as an insoluble protein. The vector also contained a six-histidine tag at the C-terminus for convenient purification and detection. To express and purify the HIV-1 Vif and hAPOBEC3G in E.coli cells, the accuracy of inserted gene and specificity of proteins were detected by the two enzyme digestion method, SDS-PAGE, and Western blotting. Rabbits were then immunized by Vif or APOBEC3G protein and serum samples were tested by indirect ELISA to determine the level of antibodies. Immunoenzyme and immunofluorescence assays were performed to identify the specificity of polyclonal antibodies. The titer of the anti-Vif antibodies was 1:204800, and that of the anti-APOBEC3G antibodies was 1:102400. Thus the antibodies could detect the antigen expression in the cells, demonstrating that fusion proteins with high purity and their corresponding polyclonal antibodies with high titer and specificity were achieved.
文摘Objective- To compare the consistency of the results from detecting HIV-1 antibody in the paired urine and serum specimens from drug users by ELISA. Methods: The paired urine and serum specimens from 273 drug users detained at a detoxification unit were collected, and the HIV-1 antibodies in the specimens of them were screened by urine and serum ELISA kits, respectively. Results: Of 273 serum specimens, 94 ones showed positive reaction and among 94 counterpart urine specimens, 93 ones also appeared positive reaction. Taking the results together,the consistent rate of HIV-1 antibody screened by urine and serum ELISA kits was 99.6%. Conclusion: The urine ELISA kit, which screened HIV-1 antibody of urine showing almost the same results tested by serum ELISA kit, is reliable. It is proposed that urine ELISA be introduced in many fields.
基金grants from the National Natural Science Foundation of China (39500137, 30471605, 30671960) the Natural Science Foundation of Yunnan (95C0099Q)+3 种基金 Key Technological R&D Program of China (2004BA719A14) and Yunnan (2004NG12) CAS Projects (KSZ85-0108, STZ-01-17 KSCX2-SW-216 KSCX 1-SW- 11, KSCX 1-YW-R- 15).
文摘HIV-1 p24 detection provides a means to aid the early diagnosis of HIV-1 infection, track the progression of disease and assess the efficacy of antiretroviral therapy. In the present study, three monoclonal antibodies (mAbs) p3JB9, p5F1 and p6F4 against HIV-1 p24 were generated. All mAbs could detect p24 of HIV-1ⅢB, HIV-1Ada-M, HIV-174v mAbs p5F1 and p6F4 could detect HIV-1KM018, while p3JB9 could not. Three mAbs did not react with HIV-2ROD, HIV-2CBL-20 and SIVagmTYO-1. The recognized epitope of p5F1 was located on the Gag amino acid region DCKTILKALGPAATLEEMMTAC. The p5F1 was used to establish a modified sandwich ELISA with rabbit anti-p24 serum and showed good specificity and high sensitivity, which has been used to measure HIV-1 p24 antigen levels in research. Cellular & Molecular Immunology.
文摘Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I(HIV-1)through antiretroviral therapy.However,vaccine development has remained challenging.Recent discoveries in broadly neutralizing monoclonal antibodies(bNAbs)has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response.Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein(Env)during infection.Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.
基金supported by grants from the CAMS Innovation Fund for Medical Sciences(2017-I2M-1-014)National Science and Technology Major Project of China(2018ZX10301103 and 2017ZX10202102-001-003)National Natural Science Foundation of China(81630061).
文摘The cure or functional cure of the"Berlin patient"and"London patient"indicates that infusion of HIV-resistant cells could be a viable treatment strategy.Very recently,we genetically linked a short-peptide fusion inhibitor with a glycosylphosphatidylinositol(GPI)attachment signal,rendering modified cells fully resistant to HIV infection.In this study,GPI-anchored m36.4,a single-domain antibody(nanobody)targeting the coreceptor-binding site of gp120,was constructed with a lentiviral vector.We verified that m36.4 was efficiently expressed on the plasma membrane of transduced TZM-bl cells and targeted lipid raft sites without affecting the expression of HIV receptors(CD4,CCR5,and CXCR4).Significantly,TZM-bl cells expressing GPI-m36.4 were highly resistant to infection with divergent HIV-1 subtypes and potently blocked HIV-1 envelope-mediated cell-cell fusion and cell-cell viral transmission.Furthermore,we showed that GPI-m36.4-modified human CEMss-CCR5 cells were nonpermissive to both CCR5-and CXCR4-tropic HIV-1 isolates and displayed a strong survival advantage over unmodified cells.It was found that GPI-m36.4 could also Impair HIV-1 Env processing and viral infectivity in transduced cells,underlying a multifaceted mechanism of antiviral action.In conclusion,our studies characterize m36.4 as a powerful nanobody that can generate HIV-resistant cells,offering a novel gene therapy approach that can be used alone or in combination.
基金Supported by the National Natural Science Foundation of China (No. 30270286)
文摘Some monoclonal antibodies (mAbs) could inhibit infection by HIV-1. In this study, four mAbs against HIV-1 gp41 were prepared in mice. All four mAbs could bind to the recombinant soluble gp41 and recognize the native envelope glycoprotein gp160 expressed on the HIV-Env^+ CHO-WT cell in flow cytometry analysis. Interestingly, the results show that all four mAbs purified by affinity chromatography could inhibit HIV-1 Env-mediated membrane fusion (syncytium formation) by 40%-60% at 10 μg/mL, which implies potential inhibitory activities against HIV-1.
基金Supported by the National High-Tech Research and Development (973) Program of China (No. 2006CB504203)
文摘The epitope ELDKWA, which is located in the membrane-proximal external region (MPER) of HIV-1 gp41, is an important neutralizing epitope. The human monoclonal antibody (mAb) 2F5 against this epitope shows broad neutralizing activity toward many HIV strains. However, several reports have shown that the epitope-specific mAbs induced by peptides containing MPER did not exhibit the same neutralizing activities as human mAb 2F5. In this study, four ELDKWA epitope specific mAbs (9E7, 7E10, 6B5, and 2B4) induced by immunization with the ELDKWA epitope in varied molecular contexts, all showed inhibitory activi- ties with different potencies in HIV-1 Env-mediated membrane fusion assays and pseudovirus neutralization assays. This result indicates that though these antibodies recognize the epitope ELDKWA, their characteri- zations differ from that of neutralizing antibodies, implying that the neutralizing mAbs can be induced but also need to be screened, and the protective ability of a related vaccine antigen depends on the concentra- tion of the neutralizing mAbs in the induced polyclonal antibodies.
基金supported by the Natural Science Foundation of Guangdong (No. 2015A030313741)the National Natural Science Foundation of China (No. 31440041)+2 种基金Shenzhen Peacock Innovation Plan Fund (No. KQCX20140520154115029)Shenzhen Knowledge Innovation Program (No. JCYJ20140901003939 026)Novo Nordisk A/S-Chinese Academy of Sciences Research Fund (No. NNCAS-2013-9)
文摘The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.
基金the National Natural Science Foundation of China (No.30270286) and the Fund for Doctoral Station of the Ministry of Education China (No. 20010003054)
文摘A seven-amino acid epitope GPGRAFY at the tip of the V3 loop in HIV-1 gp120 is the principal neutralizing epitope, and a subset of anti-V3 antibodies specific for this epitope shows a broad range of neu-tralizing activity. GPGRAFY-epitope-specific neutralizing antibodies were produced using predefined GPGRAFY-epitope-specific peptides instead of a natural or recombinant gp120 bearing this epitope. All six monoclonal antibodies (mAbs) could recognize the GPGRAFY-epitope on peptides and two of the antibod-ies, 9D8 and 2D7, could recognize recombinant gp120 in enzymelinked immunosorkentassy (ELISA) as-says. In the flow cytometry analysis, the mAbs 9D8 and 2D7 could bind to HIV-Env+ CHO-WT cells and the specific bindings could be inhibited by the GPGRAFY-epitope peptide, which suggests that these two mAbs could recognize the native envelope protein gp120 expressed on the cell membrane. However, in syncytium assays, none of the mAbs was capable of inhibiting HIV-Env-mediated cell membrane fusion. The different activities for recognizing native HIV-1 gp120 might be associated with different antibody affinities against the epitopes. The development of conformational mimics of the neutralization epitope in the gp120 V3 loop could elicit neutralizing mAbs with high affinity.
文摘Simpli RED HIV-1 antibody test was used to detect 17,378 samples from people of entering coutry. 10 samples were positive. Using Western Blot as the cofirmatory test, 8/10 was positive. The advantages of this test was very sensitive, quick and easy. 20 ul whole blood could be used as sample and got the results in two minutes.
文摘The complement system,a key component of innate immunity,is a first-line defender against foreign pathogens such as HIV-1.The role of the complement system in HIV-1 pathogenesis appears to be multifaceted.Although the complement system plays critical roles in clearing and neutralizing HIV-1 virions,it also represents a critical factor for the spread and maintenance of the virus in the infected host.In addition,complement regulators such as human CD59 present in the envelope of HIV-1 prevent complement-mediated lysis of HIV-1.Some novel approaches are proposed to combat HIV-1 infection through the enhancement of antibody-dependent complement activity against HIV-1.In this paper,we will review these diverse roles of complement in HIV-1 infection.
基金supported by the National Grand Program on Key Infectious Disease Control(2012ZX10001-006,2012ZX10001-009 and 2012ZX10001-003)the National Outstanding Youth Award(30825035)+1 种基金the National Natural Science Foundation of China(81101236)the Tsinghua University Initiative Scientific Research Program
文摘VRC01, a broadly neutralizing monoclonal antibody (bnmAb), can neutralize a diverse array of HIV-1 isolates by mimicking CD4 binding to the envelope glycoprotein gpl20. We have previously demonstrated the presence of VRC01-resistant strains in an HIV-1 infected patient during antiretroviral therapy. Here, we report follow-up studies of two subsequent samples from the same patient. With genetic and phenotypic analysis of over 70 full-length molecular clones of the HIV-1 envelope, we show that VRC01-resistant HIV-1 continued to exist and change in its proportion of the infecting virus during treatment with a highly active antiretroviral therapy. Consistent with our previous observation, the resistant phenotype was associated with a single asparagine residue at position 460 (N460), a potential N-linked glycosylation site in the V5 region. The persistence and continuing evolution of VRC01-resistant HIV-1 in vivo presents a great challenge to our future preventative and therapeutic interventions based on VRC01.
基金supported by grants from the National Key R&D Program of China(2019YFA0904400)National Natural Science Foundation of China(81822027,81630090,81902108)Science and Technology Commission of Shanghai Municipality(20DZ2254600,20DZ2261200)。
文摘Advancements in high-throughput sequencing(HTS)of antibody repertoires(Ig-Seq)have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale.However,currently,only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions,possibly limited by inadequate sequencing depth and throughput.To better understand how HIV-1 infection would impact humoral immune system,in this study,we systematically analyzed the differences between the IgM(HIV-IgM)and IgG(HIV-IgG)heavy chain repertoires of HIV-1 infected patients,as well as between antibody repertoires of HIV-1 patients and healthy donors(HH).Notably,the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries,and the diversity of unique clones in HIV-IgG remarkably reduced.In aspect of somatic mutation rates of CDR1 and CDR2,the HIV-IgG repertoire was higher than HIV-IgM.Besides,the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire,presumably caused by the great number of novel VDJ rearrangement patterns,especially a massive use of IGHJ6.Moreover,some of the B cell clonotypes had numerous clones,and somatic variants were detected within the clonotype lineage in HIV-IgG,indicating HIV-1 neutralizing activities.The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies.
基金supported by the Fund for Jiangsu Specially-Appointed Professor(2014JSTPJS-53)the Innovation Fund from National Center for AIDS/STD Control and Prevention,China CDC,Capital Medical University Key Laboratory Project(2-03-02-BJYAH 2016006)China’s 12th Five-Year Major Project on the Prevention and Treatment of AIDS
文摘HIV-1-specific cytotoxic T lymphocytes(CTLs) and neutralizing antibodies(NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Here, using an in vitro model involving autologous CD4+ T cells,primary HIV-1 isolates, HIV-1-specific CTLs, and neutralizing monoclonal antibodies, we show that b12, a potent and broadly neutralizing monoclonal antibody to HIV-1, was able to block viral infection when preincubated with virus prior to infection, but was much less effective than CTLs at limiting virus replication when added to infected cell cultures. However, the same neutralizing antibody was able to contain viruses by antibody-dependent cell-mediated virus inhibition in vitro,which was mediated by natural killer cells(NKs) and dependent on an Fc-Fc receptor interaction.Meanwhile, bulk CTLs from HIV-1 controllers were more effective in suppression of virus replication than those from progressors. These findings indicate that control of HIV-1 replication in activated CD4^+ T cells is ineffectively mediated by neutralizing antibodies alone, but that both CTLs and antibody-dependent NK-mediated immune mechanisms contribute to viral containment. Our study systemically compared three major players in controlling HIV-1 infection, CTLs, NAbs, and NKs, in an autologous system and highlighted the multifactorial mechanisms for viral containment and vaccine success.
基金This work was supported by the National Natural Science Foundation of China(81672018,81561128008)the National Basic Research Program of China(973program#2014CB542502)+2 种基金the National 13th Five-Year Grand Program on Key Infectious Disease Control(2017ZX10202102)Shanghai Pujiang Program(19PJ1409100)Intramural Funding from Shanghai Public Health Clinical Center.
文摘Raising a heterologous tier 2 neutralizing antibody(nAb)response remains a daunting task for HIV vaccine development.In this study,we explored the utility of diverse HIV-1 envelope(Env)immunogens in a sequential immunization scheme as a solution to this task.This exploration stemmed from the rationale that gp145,a membrane-bound truncation form of HIV Env,may facilitate the focusing of induced antibody response on neutralizing epitopes when sequentially combined with the soluble gp140 form as immunogens in a prime-boost mode.We first showed that gp140 DNA prime-gp145 Tiantan vaccinia(TV)boost likely represents a general format for inducing potent nAb response in mice.However,when examined in rhesus macaque,this modality showed little effectiveness.To improve the efficacy,we extended the original modality by adding a strong protein boost,namely native-like SOSIP.664 trimer displayed on ferritin-based nanoparticle(NP),which was generated by a newly developed click approach.The resulting three-immunization regimen succeeded in eliciting tier-2 nAb response with substantial breadth when implemented in rhesus macaque over a short 8-week schedule.Importantly,the elicited nAb response was able to effectively contain viremia upon a heterologous SHIV challenge.Collectively,our studies highlighted that diversification of Env immunogens,in both types and formulations,under the framework of a sequential immunization scheme might open new opportunity toward HIV vaccine development.