Aerosol optical depth (AOD) is a common indicator applied in monitoring aerosols in the atmosphere. The hilly landscape and rapid economic growth of the megacity Chongqing have facilitated increased aerosol concentr...Aerosol optical depth (AOD) is a common indicator applied in monitoring aerosols in the atmosphere. The hilly landscape and rapid economic growth of the megacity Chongqing have facilitated increased aerosol concentration, and it is meaningful to accurately retrieve AOD over Chongqing. The HJ-1A/B satellite of China carries a sensor/camera called the Charge Coupled Device (CCD), the spatial resolution of which meets the requirement for re- trieving high resolution AOD. In this paper, analysis of the AOD retrievals from different methods using the H J-1 satellite data revealed the most suitable algorithm. Through comparison with the AOD product of Moderate Resolu- tion Imaging Spectroradiometer (MODIS), the AOD retrieval results using enhanced vegetation index (EVI) to estim- ate dark pixels showed the highest correlation. The continental aerosol model was used to build a lookup table that was able to facilitate a good AOD retrieval for both city and rural areas. Finally, the algorithm that combined dark pixels, buffer areas, and the deep blue algorithm was found to be most suitable for AOD retrieval. The AOD retrieval results based on the HJ-1 data were consistent with MODIS products, and our algorithm yields reasonable results in most cases. The results were also compared with ground-based PMl0 measurements synchronized with the overpass time of the HJ-1 satellite, and high correlation was found. The findings are relevant to other Chinese satellite data used for retrieving AOD on the same channels.展开更多
Synchronization experiment was conducted in June,2009 to get Inherent Optical Properties(IOP) of water component in Chaohu Lake.Water bio-optical mechanism was studied combined with multispectral data of Environmental...Synchronization experiment was conducted in June,2009 to get Inherent Optical Properties(IOP) of water component in Chaohu Lake.Water bio-optical mechanism was studied combined with multispectral data of Environmental Satellite 1(CCD),and then inversion models of total suspended matter(TSM),inorganic suspended matter(ISM) and organic suspended matter(OSM) concentration were built.The data indicated that:the absorption ratio of suspended particulate matter and CDOM to total were almost no change from band 1 to band 2 with about 85% and 9%,respectively.The ratio of pure water to total increased from 0.4% to 5.6%.Water reflectance in these two bands were influenced by absorption of three kinds of components:algae particles absorption surpassed non-algal particles in band 3,and so played an important role in total absorption with about 35.7%;the proportion of pure water absorption and particles matter backscattering both were 99% in band 4,so these two components decided the main inherent optical properties in band 4.The models of TSM and ISM concentration inversion based on band combination(band 3 + band 4)/(band 1 + band 2) were built,while OSM concentration was estimated by band 4/(band 1 + band 2) index.Inversed by image data,RE of TSM concentration between modeled and measured was 33.4%,and RMSE was 18.68 mg/L.RE of ISM and OSM concentration were 39.9% and 35.2% respectively.The inversion was more accurate when satellite-ground data were just in the same day.At this situation,RE of ISM concentration dropped to 25.4%,and that of TSM and OSM reduced to 26.5% and 26.8% as well.展开更多
基金Supported by the National Natural Science Foundation of China(41631180 and 41471305)Sichuan Youth Science Fund(2015JQ0037)+2 种基金Chongqing Meteorological Bureau Open Fund(kfjj-201402)China Meteorological Administration Special Fund for Forecasting(CMAHX20160406)Sichuan Province Department of Education Innovation Team Fund(16TD0024)
文摘Aerosol optical depth (AOD) is a common indicator applied in monitoring aerosols in the atmosphere. The hilly landscape and rapid economic growth of the megacity Chongqing have facilitated increased aerosol concentration, and it is meaningful to accurately retrieve AOD over Chongqing. The HJ-1A/B satellite of China carries a sensor/camera called the Charge Coupled Device (CCD), the spatial resolution of which meets the requirement for re- trieving high resolution AOD. In this paper, analysis of the AOD retrievals from different methods using the H J-1 satellite data revealed the most suitable algorithm. Through comparison with the AOD product of Moderate Resolu- tion Imaging Spectroradiometer (MODIS), the AOD retrieval results using enhanced vegetation index (EVI) to estim- ate dark pixels showed the highest correlation. The continental aerosol model was used to build a lookup table that was able to facilitate a good AOD retrieval for both city and rural areas. Finally, the algorithm that combined dark pixels, buffer areas, and the deep blue algorithm was found to be most suitable for AOD retrieval. The AOD retrieval results based on the HJ-1 data were consistent with MODIS products, and our algorithm yields reasonable results in most cases. The results were also compared with ground-based PMl0 measurements synchronized with the overpass time of the HJ-1 satellite, and high correlation was found. The findings are relevant to other Chinese satellite data used for retrieving AOD on the same channels.
基金supported by National Key Project of China (Grant No.2009ZX07527-6)National Key Technology R&D Program of China (Grant No.2008BAC34B05)National Natural Science Foundation of China (Grant No.40971215)
文摘Synchronization experiment was conducted in June,2009 to get Inherent Optical Properties(IOP) of water component in Chaohu Lake.Water bio-optical mechanism was studied combined with multispectral data of Environmental Satellite 1(CCD),and then inversion models of total suspended matter(TSM),inorganic suspended matter(ISM) and organic suspended matter(OSM) concentration were built.The data indicated that:the absorption ratio of suspended particulate matter and CDOM to total were almost no change from band 1 to band 2 with about 85% and 9%,respectively.The ratio of pure water to total increased from 0.4% to 5.6%.Water reflectance in these two bands were influenced by absorption of three kinds of components:algae particles absorption surpassed non-algal particles in band 3,and so played an important role in total absorption with about 35.7%;the proportion of pure water absorption and particles matter backscattering both were 99% in band 4,so these two components decided the main inherent optical properties in band 4.The models of TSM and ISM concentration inversion based on band combination(band 3 + band 4)/(band 1 + band 2) were built,while OSM concentration was estimated by band 4/(band 1 + band 2) index.Inversed by image data,RE of TSM concentration between modeled and measured was 33.4%,and RMSE was 18.68 mg/L.RE of ISM and OSM concentration were 39.9% and 35.2% respectively.The inversion was more accurate when satellite-ground data were just in the same day.At this situation,RE of ISM concentration dropped to 25.4%,and that of TSM and OSM reduced to 26.5% and 26.8% as well.