The brightness reversal of submarine sand waves appearing in the small satellite constellation for environ- ment and disaster monitoring and forecasting ("HJ- 1A/B") CCD sun glitter images can affect the observati...The brightness reversal of submarine sand waves appearing in the small satellite constellation for environ- ment and disaster monitoring and forecasting ("HJ- 1A/B") CCD sun glitter images can affect the observation and depth inversion of sand wave topography. The simulations of the normalized sun glitter radiance on the submarine sand waves confirm that the reversal would happen at a specific sensor viewing angle, defined as the critical angle. The difference between the calculated critical angle position and the reversal position in the image is about 1', which is excellent in agreement. Both the simulation and actual image show that sand wave crests would be indistinct at the reversal position, which may cause problems when using these sun glitter images to analyze spatial characteristics and migration of sand waves. When using the sun glitter image to obtain the depth inversion, one should take the advantage of image properties of sand waves and choose the location in between the reversal position and the brightest position. It is also necessary to pay attention to the brightness reversal when using "HI-1A/B" CCD images to analyze other oceanic features, such as internal waves, oil slicks, eddies, and ship wakes.展开更多
Band-to-band registration accuracy is an important parameter of multispectral data. A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B. Firstly, the mai...Band-to-band registration accuracy is an important parameter of multispectral data. A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B. Firstly, the main causes resulted in misregistration are analyzed, and a high-order polynomial model is proposed. Secondly, a phase fringe filtering technique is employed to Phase Correlation Method based on Singular Value Decomposition (SVD-PCM) for reducing the noise in phase difference matrix. Then, experiments are carried out to build nonlinear registration models, and images of green band and red band are aligned to blue band with an accuracy of 0.1 pixels, while near infrared band with an accuracy of 0.2 pixels.展开更多
基金The Marine Scientific Public Welfare Research Special Foundation under contract No.201105001the Key Laboratory of Ocean Dynamic Processed and Satellite Oceanography under contract No.SOED1006
文摘The brightness reversal of submarine sand waves appearing in the small satellite constellation for environ- ment and disaster monitoring and forecasting ("HJ- 1A/B") CCD sun glitter images can affect the observation and depth inversion of sand wave topography. The simulations of the normalized sun glitter radiance on the submarine sand waves confirm that the reversal would happen at a specific sensor viewing angle, defined as the critical angle. The difference between the calculated critical angle position and the reversal position in the image is about 1', which is excellent in agreement. Both the simulation and actual image show that sand wave crests would be indistinct at the reversal position, which may cause problems when using these sun glitter images to analyze spatial characteristics and migration of sand waves. When using the sun glitter image to obtain the depth inversion, one should take the advantage of image properties of sand waves and choose the location in between the reversal position and the brightest position. It is also necessary to pay attention to the brightness reversal when using "HI-1A/B" CCD images to analyze other oceanic features, such as internal waves, oil slicks, eddies, and ship wakes.
文摘Band-to-band registration accuracy is an important parameter of multispectral data. A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B. Firstly, the main causes resulted in misregistration are analyzed, and a high-order polynomial model is proposed. Secondly, a phase fringe filtering technique is employed to Phase Correlation Method based on Singular Value Decomposition (SVD-PCM) for reducing the noise in phase difference matrix. Then, experiments are carried out to build nonlinear registration models, and images of green band and red band are aligned to blue band with an accuracy of 0.1 pixels, while near infrared band with an accuracy of 0.2 pixels.