Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat...Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.展开更多
Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposab...Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).展开更多
High qualityβ-Ga_(2)O_(3)single crystal nanobelts with length of 2−3 mm and width from tens of microns to 132μm were synthesized by carbothermal reduction method.Based on the grown nanobelt with the length of 600μm...High qualityβ-Ga_(2)O_(3)single crystal nanobelts with length of 2−3 mm and width from tens of microns to 132μm were synthesized by carbothermal reduction method.Based on the grown nanobelt with the length of 600μm,the dual-Schottky-junctions coupling device(DSCD)was fabricated.Due to the electrically floating Ga_(2)O_(3)nanobelt region coupling with the double Schottky-junctions,the current I_(S2)increases firstly and rapidly reaches into saturation as increase the voltage V_(S2).The saturation current is about 10 pA,which is two orders of magnitude lower than that of a single Schottky-junction.In the case of solar-blind ultraviolet(UV)light irradiation,the photogenerated electrons further aggravate the coupling physical mechanism in device.I_(S2)increases as the intensity of UV light increases.Under the UV light of 1820μW/cm^(2),I_(S2)quickly enters the saturation state.At V_(S2)=10 V,photo-to-dark current ratio(PDCR)of the device reaches more than 104,the external quantum efficiency(EQE)is 1.6×10^(3)%,and the detectivity(D*)is 7.5×10^(12)Jones.In addition,the device has a very short rise and decay times of 25−54 ms under different positive and negative bias.DSCD shows unique electrical and optical control characteristics,which will open a new way for the application of nanobelt-based devices.展开更多
During the 2006 experiment campaign of HL-2A, about 2000 shots have been implemented, the plasma current of 433 kA and 3.0 s duration have been obtained. The wall conditioning methods such as glow discharge cleating ...During the 2006 experiment campaign of HL-2A, about 2000 shots have been implemented, the plasma current of 433 kA and 3.0 s duration have been obtained. The wall conditioning methods such as glow discharge cleating (GDC) , siliconization and Ti sublimation were applied. The experiment results of wall conditioning research will be introduced in this report. At the same time, the conceptual design of modification of HL-2A tokamak has obtained great progress, two modification schemes have been obtained, and the conceptual design results will be presented.展开更多
CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@M...CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices.展开更多
With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of...With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations.展开更多
An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device...An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.展开更多
As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislo...As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.展开更多
Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable succes...Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.展开更多
Recent advances in two-dimensional (2D) materials following the successful fabrication of graphene in 2004 by Novoselov and Geim is expected to grow into the new silicon, offering a lifeline for Moore’s law. With the...Recent advances in two-dimensional (2D) materials following the successful fabrication of graphene in 2004 by Novoselov and Geim is expected to grow into the new silicon, offering a lifeline for Moore’s law. With the rapid development of the synthesis methods, more and more 2D materials, such as transition metal dichalcogenides (TMDs, MX2), black phosphorus (BP) and InSe with a finite gap are reported to be more promising for achieving this dream since they often offer alternative solutions to compensate for the gapless graphene’s weaknesses.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties ...The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties were investigated.A distinct bipolar resistive switching behavior of the devices was observed at room temperature.The resistance ratio R_(HRS)/RLRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V.The dominant conduction mechanism of the device is trap-controlled space charge limited current(SCLC).The devices exhibit good durability under 1×10^3cycles and the degradation is invisible for more than 10^6 s.展开更多
In the last decade, the rise of two-dimensional (2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light-matter interaction in 2D ma...In the last decade, the rise of two-dimensional (2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light-matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plas- monic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light-matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is compre- hensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.61904151)the National Key Research and Development Program of China(No.2021YFA1200803)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020).
文摘Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.
基金supported by National Key R&D Program of China[2021YFC2301103 and 2022YFE0202600]Shenzhen Science and Technology Program[JSGG20220606142605011].
文摘Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).
基金supported by Natural Science Basic Research Program in Shaanxi Province of China(No.2023-JCYB-574)National Natural Science Foundation of China(No.62204203).
文摘High qualityβ-Ga_(2)O_(3)single crystal nanobelts with length of 2−3 mm and width from tens of microns to 132μm were synthesized by carbothermal reduction method.Based on the grown nanobelt with the length of 600μm,the dual-Schottky-junctions coupling device(DSCD)was fabricated.Due to the electrically floating Ga_(2)O_(3)nanobelt region coupling with the double Schottky-junctions,the current I_(S2)increases firstly and rapidly reaches into saturation as increase the voltage V_(S2).The saturation current is about 10 pA,which is two orders of magnitude lower than that of a single Schottky-junction.In the case of solar-blind ultraviolet(UV)light irradiation,the photogenerated electrons further aggravate the coupling physical mechanism in device.I_(S2)increases as the intensity of UV light increases.Under the UV light of 1820μW/cm^(2),I_(S2)quickly enters the saturation state.At V_(S2)=10 V,photo-to-dark current ratio(PDCR)of the device reaches more than 104,the external quantum efficiency(EQE)is 1.6×10^(3)%,and the detectivity(D*)is 7.5×10^(12)Jones.In addition,the device has a very short rise and decay times of 25−54 ms under different positive and negative bias.DSCD shows unique electrical and optical control characteristics,which will open a new way for the application of nanobelt-based devices.
文摘During the 2006 experiment campaign of HL-2A, about 2000 shots have been implemented, the plasma current of 433 kA and 3.0 s duration have been obtained. The wall conditioning methods such as glow discharge cleating (GDC) , siliconization and Ti sublimation were applied. The experiment results of wall conditioning research will be introduced in this report. At the same time, the conceptual design of modification of HL-2A tokamak has obtained great progress, two modification schemes have been obtained, and the conceptual design results will be presented.
基金supported by the Fundamental Research Funds for the Central Universities (No 30919011410)。
文摘CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices.
基金supported by NSF of China (Grant No. 61775241)partly by the Innovation-driven Project (Grant No. 2017CX019)the funding support from the Australian Research Council (ARC Discovery Projects, DP180102976)
文摘With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations.
基金the support of National Natural Science Foundation of China (Nos. 51702284 and 21878270)Zhejiang Provincial Natural Science Foundation of China (LR19B060002)+5 种基金the Startup Foundation for Hundred-Talent Program of Zhejiang University(112100-193820101/001/022)the support of Shenzhen Science and Technology Project of China (JCYJ20170412105400428)the support of Zhejiang Provincial Natural Science Foundation of China (LR16F040001)Open Project of Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Universitythe support of Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University (K19-534202-002)Provincial Innovation Team on Hydrogen Electric Hybrid Power Systems in Zhejiang Province
文摘An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.
基金the Financial support from the National key Research and Development Program of China(Nso.2018YFB0406502,2016YFB1102201)the National Natural Science Foundation of China(Grant No.51321091)+2 种基金the key Research and Development Program of Shandong Province(No.2018CXGC0410)the Young Scholars Program of Shandong University(No.2015WLJH36)the 111 Project 2.0(No.BP2018013)
文摘As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.
文摘Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.
文摘Recent advances in two-dimensional (2D) materials following the successful fabrication of graphene in 2004 by Novoselov and Geim is expected to grow into the new silicon, offering a lifeline for Moore’s law. With the rapid development of the synthesis methods, more and more 2D materials, such as transition metal dichalcogenides (TMDs, MX2), black phosphorus (BP) and InSe with a finite gap are reported to be more promising for achieving this dream since they often offer alternative solutions to compensate for the gapless graphene’s weaknesses.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
基金Funded by the National Natural Science Foundation of China(No.51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties were investigated.A distinct bipolar resistive switching behavior of the devices was observed at room temperature.The resistance ratio R_(HRS)/RLRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V.The dominant conduction mechanism of the device is trap-controlled space charge limited current(SCLC).The devices exhibit good durability under 1×10^3cycles and the degradation is invisible for more than 10^6 s.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB932403)the National Natural Science Foundation of China(Grant Nos.61422501,11674012,11374023,and 61521004)+2 种基金Beijing Natural Science Foundation,China(Grant No.L140007)Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201420)National Program for Support of Top-notch Young Professionals,China
文摘In the last decade, the rise of two-dimensional (2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light-matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plas- monic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light-matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is compre- hensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.