期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Analysis of the Origin of the Interaction Force between Electric Charges, including Justification of the ln<i>r</i>Term in the Completed Coulomb’s Law, in HM16 Ether
1
作者 Ioan Has Simona Miclaus Aurelian Has 《Journal of Modern Physics》 2019年第9期1090-1124,共35页
In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electric... In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electrical interactions between charged microparticles (MPs), which develop as fundamental vibrations (FVs) in ether, producing the vibrational strains &epsilon;and &gamma;and the resulting stresses &sigma;and &tau;, as percussions of ether cells (ECs) upon the MP surface. The stresses &sigma;?and?&tau;produce a resultant force FP, due to the percussions which constitute the real electric force FCC. The spatial effect of ether on FP is demonstrated by an analytical method, considering the electrical interaction between MPs through various equidistant spatial paths li of FVs, modelled on the basis of the Huygens principle for waves. For this issue, we utilized a numerical calculation, which could be generalized. But this spatial effect of the ether leads at a very slow decreasing of the FP forces ratio rF when doubling the distance l, in contrast to Coulomb’s FC forces whose ratio rF?decreases accentuate with doubling l. Accordingly, the necessity of including the term ln r in the FCC force, which is limited to 1.0 for doubling l, at long distances, was justified. 展开更多
关键词 Nature of ELECTRIC Charges Constitution of Microparticles Calculus of ELECTRIC FORCES from Percussions FORCES hm16 Model of ETHER with Fundamental Vibrations Completed Coulomb LAW JUSTIFICATION
下载PDF
New Properties of HM16 Ether, with Submicroparticles as Self-Functional Cells Interacting through Percussion Forces, Establishing Nature of Electrical Charges, including Gravitation
2
作者 Ioan Has Simona Miclaus Aurelian Has 《Journal of Modern Physics》 2020年第6期803-853,共51页
Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the mod... Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the modalities of interaction between two SMPs, based on periodic mechanical percussion forces, produced by fundamental vibrations FVs. A mechanism for describing the interaction between a SMPs and the ETH is presented. Positive and negative particles are defined by their membrane types of movement, such as +, <span style="white-space:nowrap;">&minus;</span><em>u</em>/+, <span style="white-space:nowrap;">&minus;</span><em>v</em> vibrations, and rotations at speeds +<span style="white-space:nowrap;">&Omega;</span>/<span style="white-space:nowrap;">&minus;</span><span style="white-space:nowrap;">&Omega;</span>. The process of creating a pair of SMPs is discussed. Applying HFVI to the interaction between pairs of SMPs immobile in ETH, and considering longitudinal FVL, was obtained the forces of attraction/repulsion +<em>F</em><sub><em>L</em>21</sub>/–<em>F<sub>L</sub></em><sub>21</sub>, which correspond to the completed Coulomb force<em> F<sub>CC</sub></em> including gravitation. The resultant <em>F</em><sub>RL21</sub> will form an oriented field of forces, which is a quasielectric field <em>QE</em>, equivalent to actual <em>E</em> electric field. Considering transversal FVT, was obtained the vibratory forces +, <span style="white-space:nowrap;">&minus;</span><em>F<sub>T</sub></em><sub>21</sub>, whose resultant forms an vibrating field of forces, <em>QHs</em>, a quasimagnetic special field, which may explain some of the quantum properties of SMPs. Considering a mobile SMP, two new<em> <span style="white-space:nowrap;">&gamma;</span></em> strains in ETH appear. Strains <em><span style="white-space:nowrap;">&gamma;</span><sub>L</sub></em> are created by the displacement of SMP with velocity<em> V</em>, whose force +, <span style="white-space:nowrap;">&minus;</span><em>F<sub>T</sub></em><sub>12</sub> is the support of a component of the magnetic field <em>H</em> (quasimagnetic field <em>QH</em>), giving the <em>QH<sub>L</sub></em> component. Strains <em>γ</em><sub>R</sub> are created by the rotation of SMP with speed <span style="white-space:nowrap;">&Omega;</span>, whose force +, <span style="white-space:nowrap;">&minus;</span><em>F</em><sub>R12</sub> constitutes physical support of the component <em>QH<sub>R</sub></em> of magnetic field <em>H </em>(<em>i.e. QH)</em><em></em>. The creation of a photon PH is modelled as a special ESMP containing two zones of opposed rotations, and a mechanism is presented for its movement in the ETH with speed <em>c</em> based on the HS hypothesis of screwing in ETH, with frequency <em>ν</em>. 展开更多
关键词 Nature of Electrical Charges Submicroparticle Constitution Microparticle Interaction by Percussions Ether Model hm16 with Fundamental Vibrations Completed Coulomb’s Law Photon Constitution and Travel
下载PDF
HM-J16双光子电子直线加速器 被引量:1
3
作者 赖启基 赵明华 +1 位作者 秦国勇 李三全 《强激光与粒子束》 EI CAS CSCD 北大核心 2000年第6期767-770,共4页
简要叙述了 HM-J1 6加速器的设计思想和设计特点。设计了一台采用射频功率反馈的射线能量范围为 6~ 1 6Me V的双光子电子直线加速器。其最大辐射野为 4 0 cm× 4 0 cm,双光子剂量率均大于3 60 c Gy/ (min·m)。
关键词 医用电子直线加速器 辐射野 双光子 宽能区 射频功率反馈 HM—J16加速器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部