In this study, we performed some filters to highlight geological structures and/or features which are found in the igneous rocks, between the latitudes 9°45'N to 10°45'N and longitudes 13°15'...In this study, we performed some filters to highlight geological structures and/or features which are found in the igneous rocks, between the latitudes 9°45'N to 10°45'N and longitudes 13°15'E to 14°30'E. The application of the first vertical derivative (FVD) and the horizontal gradient magnitude (HGM) on a total magnetic data over the study area has led to put in evidence: 1) geological features as geological boundaries, faults, dykes, folds on the FVD map;2) abundant aeromagnetic lineaments probably fractures, dykes and contacts, ex-hibit a conjugate relationship suggesting a near NE and NW tectonic trends;3) existence of a possible prominent near E-W compression, characterized by a possible dextral displacement of geological formations by the shear movements;4) and the magnetic signature of the country rocks.展开更多
The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological...The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological cover. The GEOSOFT v8.4 software was used to process the data. Upward continuation of the residual magnetic intensity map at various altitudes and the maxima of their horizontal gradient magnetic were used to highlight faults from shallow to deep, as well as, their dips and mineralization zones. The faults with the directions E-W, ESE-WNW and ENE-WSW are identified confirming the result of [1]. This study also reveals that, the layer is affected by faults propagating from the basement upwards into the cover. Our results added additional information to the knowledge of the geological structure and the mineral resources potential in the study area. Based on the 2D3/4 modeling, the Dja Fault (DF) is revealed and highlighted sub-area marked by a magnetite/or hematite dolerite, schist and sandstone blocks, which show strong magnetization. Specifically, in this area, models are made of BIF (bounded iron formation) and BIQ (bounded iron quartzite) as dominant minerals.展开更多
文摘In this study, we performed some filters to highlight geological structures and/or features which are found in the igneous rocks, between the latitudes 9°45'N to 10°45'N and longitudes 13°15'E to 14°30'E. The application of the first vertical derivative (FVD) and the horizontal gradient magnitude (HGM) on a total magnetic data over the study area has led to put in evidence: 1) geological features as geological boundaries, faults, dykes, folds on the FVD map;2) abundant aeromagnetic lineaments probably fractures, dykes and contacts, ex-hibit a conjugate relationship suggesting a near NE and NW tectonic trends;3) existence of a possible prominent near E-W compression, characterized by a possible dextral displacement of geological formations by the shear movements;4) and the magnetic signature of the country rocks.
文摘The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological cover. The GEOSOFT v8.4 software was used to process the data. Upward continuation of the residual magnetic intensity map at various altitudes and the maxima of their horizontal gradient magnetic were used to highlight faults from shallow to deep, as well as, their dips and mineralization zones. The faults with the directions E-W, ESE-WNW and ENE-WSW are identified confirming the result of [1]. This study also reveals that, the layer is affected by faults propagating from the basement upwards into the cover. Our results added additional information to the knowledge of the geological structure and the mineral resources potential in the study area. Based on the 2D3/4 modeling, the Dja Fault (DF) is revealed and highlighted sub-area marked by a magnetite/or hematite dolerite, schist and sandstone blocks, which show strong magnetization. Specifically, in this area, models are made of BIF (bounded iron formation) and BIQ (bounded iron quartzite) as dominant minerals.