Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
The stability of open-pit mine slopes is crucial for safe and efficient mining operations.However,the presence of weak interlayers poses significant challenges in maintaining the stability of slopes.To explore the imp...The stability of open-pit mine slopes is crucial for safe and efficient mining operations.However,the presence of weak interlayers poses significant challenges in maintaining the stability of slopes.To explore the impact of the rock arching effect on slopes during excavation,understand the deformation zones and evaluation stages in such environments,and analyze the formation and characteristics of cracks,this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling.Focusing on the Zaharnur open-pit coal mine in China as a prototype,a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes.The displacement,strain,stress redistribution,and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling.The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges,and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports.The concept of the rock arching effect specific to soft rocks was proposed,shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers.Based on its deformation characteristics,the slope could be divided into three areas:The excavation influence area,the crack area and the failure area.In addition,the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and0.72–1.00,respectively.These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.展开更多
In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production...In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency.展开更多
A new pseudolites (PLs) structure optimization model of global navigation satellite system (GNSS)/PLs integration positioning system used in deep open-pit mine was presented. Position dilution of precision (Pdop...A new pseudolites (PLs) structure optimization model of global navigation satellite system (GNSS)/PLs integration positioning system used in deep open-pit mine was presented. Position dilution of precision (Pdop) and reliability were selected as the optimization indicators to build a multi-objective optimization model to decide the optimum PLs location. A scheme was designed by establishing a four-dimensional model taking azimuth (a), elevation angle (e) and epoch (t) of satellites as the input independent variables and Pdop as the dependent variable to calculate the optimum PLs location zone considering the real circumstances. And then the ultimate PLs location can be fixed by testing the curves of Pdop along time. A field collected Trimble R8 GPS data set in China University of Mining and Technology (CUMT) campus was used for the model test to show the effectiveness, and the proposed PLs optimum design scheme was used at the west open-pit mine of Fushun mining group Co., Ltd., in China, better Pdop and reliability have been achieved for the integration system. Both experiments show that the proposed scheme is excellent in designing GNSS/PLs system which is helpful for improving the performance of the positioning system and reducing the cost.展开更多
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived...The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area.展开更多
As the number and geometric intensity of visual satellites are susceptible to large slopes in open-pit mines, we propose integration of GPS/Pseudolites (PLs) positioning technology which can increase the number of vis...As the number and geometric intensity of visual satellites are susceptible to large slopes in open-pit mines, we propose integration of GPS/Pseudolites (PLs) positioning technology which can increase the number of visible satellites, strengthen the geometric intensity of satellites and provide a precision solution for slope deformation monitoring. However, the un-modeled systematic errors are still the main limiting factors for high precision baseline solution. In order to eliminate the un-modeled systematic error, the Empirical Mode Decomposition (EMD) theory is employed. The multi-scale decomposition and reconstruction architecture are defined here on the basis of the EMD theory and the systematic error mitigation model is demonstrated as well. A standard of the scale selection for the systematic error elimination is given in terms of the mean of the accumulated standardized modes. Thereafter, the scheme of the GPS/PLs baseline solution based on the EMD is suggested. The simulation and experiment results show that the precision factors (DOP) are reduced greatly when PLs is located suitably. The proposed scheme dramatically improves the reliability of ambiguity resolution and the precision of baseline vector after systematic error being eliminated, and provides an effective model for high precision slope deformation monitoring in open-pit mine.展开更多
Three important aspects of phase-mining must be optimized:the number of phases,the geometry and location of each phase-pit(including the ultimate pit),and the ore and waste quantities to be mined in each phase.A model...Three important aspects of phase-mining must be optimized:the number of phases,the geometry and location of each phase-pit(including the ultimate pit),and the ore and waste quantities to be mined in each phase.A model is presented,in which a sequence of geologically optimum pits is first generated and then dynamically evaluated to simultaneously optimize the above three aspects,with the objective of maximizing the overall net present value.In this model,the dynamic nature of the problem is fully taken into account with respect to both time and space,and is robust in accommodating different pit wall slopes and different bench heights.The model is applied to a large deposit consisting of 2044 224 blocks and proved to be both efficient and practical.展开更多
Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech...Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.展开更多
The components of dust-suppressant were determined based on the analysis on characteristics and mechanisms of road dust raising in open-pit mines. The components were initially selected from moisture agent, coagulatio...The components of dust-suppressant were determined based on the analysis on characteristics and mechanisms of road dust raising in open-pit mines. The components were initially selected from moisture agent, coagulation agent and surfactant. The optimal formulation was determined based on orthogonal test and using the water loss rate as the evaluation index. The performances of moisture releasing and adsorption, wind resistance of optimal formulation in the natural environment were tested. The results show that the formula obtained in experiments provide a good performance of moisture absorption and water retention, and it also had a good dust preventing and controlling performance due to its high surface strength and consolidation under dry conditions. It has good application prospects considering the wide variety of sources for materials and the simple preparation process.展开更多
In light of the complex and dynamic mechanical properties of evolving weak strata in open-pit mines,and the consequent difficulty of determining their mechanical parameters,this study uses the ultimate balance theory,...In light of the complex and dynamic mechanical properties of evolving weak strata in open-pit mines,and the consequent difficulty of determining their mechanical parameters,this study uses the ultimate balance theory,along with the back analysis method combined with monitoring data on field displacement,to carry out parameter inversion using the FLAC3D numerical simulation software.The edge slope of a working pit of the Weijiamao open-pit mine was used as research object to this end.As the results obtained by the constitutive model were consistent with the field monitoring data,the evolving weak strata in the slope and the position of the landslide in the mine could be obtained.The landslide was directed northeast.The mechanism of the edge slope of the working pit was identified as unloading shear failure,and the feasibility of the method of parameter inversion was verified.The internal friction angle φand cohesion C of evolving weak strata in the slope of the open-pit mine were also obtained,where this compensated for the deficiency of laboratory tests and enabled the transformation from qualitative to quantitative analysis.This can provide a reliable basis for the safe operation of open-pit mines.展开更多
In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of th...In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of these air pollutants, the distributed regularity of the rock face temperature which is directly related to the air ventilation in deep open-pit mines should be studied. Here, we establish the key factors influencing the rock face temperature in a deep open-pit mine. We also present an empirical model of the rock face temperature variation in the deep open-pit mine, of which the performance is interestingly high compared with that of the field test. This study lays a foundation to study the ventilation thermodynamic theory in the deep open-pit mine, which is of great importance for theoretical studies and engineering applications of solving air pollution problem in deep open-pit mines.展开更多
Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori...Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.展开更多
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
基金supported by the National Natural Science Foundation of China(Nos.52204135 and 52374124)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2023QNRC001)+2 种基金Basic Research Project of Liaoning Provincial Department of Education,China(No.LJ222410147010)2022 China Liaoning International Science and Technology Cooperation Plan Project(No.2022JH2/10700004)Ordos Major Science and Technology Program,(No.JBGS-2023-003)。
文摘The stability of open-pit mine slopes is crucial for safe and efficient mining operations.However,the presence of weak interlayers poses significant challenges in maintaining the stability of slopes.To explore the impact of the rock arching effect on slopes during excavation,understand the deformation zones and evaluation stages in such environments,and analyze the formation and characteristics of cracks,this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling.Focusing on the Zaharnur open-pit coal mine in China as a prototype,a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes.The displacement,strain,stress redistribution,and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling.The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges,and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports.The concept of the rock arching effect specific to soft rocks was proposed,shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers.Based on its deformation characteristics,the slope could be divided into three areas:The excavation influence area,the crack area and the failure area.In addition,the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and0.72–1.00,respectively.These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.
文摘In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency.
基金Project(2013RC16)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new pseudolites (PLs) structure optimization model of global navigation satellite system (GNSS)/PLs integration positioning system used in deep open-pit mine was presented. Position dilution of precision (Pdop) and reliability were selected as the optimization indicators to build a multi-objective optimization model to decide the optimum PLs location. A scheme was designed by establishing a four-dimensional model taking azimuth (a), elevation angle (e) and epoch (t) of satellites as the input independent variables and Pdop as the dependent variable to calculate the optimum PLs location zone considering the real circumstances. And then the ultimate PLs location can be fixed by testing the curves of Pdop along time. A field collected Trimble R8 GPS data set in China University of Mining and Technology (CUMT) campus was used for the model test to show the effectiveness, and the proposed PLs optimum design scheme was used at the west open-pit mine of Fushun mining group Co., Ltd., in China, better Pdop and reliability have been achieved for the integration system. Both experiments show that the proposed scheme is excellent in designing GNSS/PLs system which is helpful for improving the performance of the positioning system and reducing the cost.
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.
基金Project (41202220) supported by the National Natural Science Foundation of ChinaProject (2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (20120022120003) supported by the Ph.D Program Foundation of Ministry of Education of China
文摘The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area.
基金supported by the Research Fund of State Key Laboratory of Coal Resources and Mine safety, China University of Mining & Technology (No.08KF07) the Doctoral Fund of Ministry of Education for Young Scholar (No.200802901516)+4 种基金the Natural Science Foundation of Jiangsu Province (No.BK2009099)the Special Foundation of NSFC-DEST (No.50810076)the National Natural Science Foundation of China (No.40774010)the National Natural Science Foundation for Young Scholar (No.40904004)the Doctoral Fund of Ministry of Education of China (No.200802900501)
文摘As the number and geometric intensity of visual satellites are susceptible to large slopes in open-pit mines, we propose integration of GPS/Pseudolites (PLs) positioning technology which can increase the number of visible satellites, strengthen the geometric intensity of satellites and provide a precision solution for slope deformation monitoring. However, the un-modeled systematic errors are still the main limiting factors for high precision baseline solution. In order to eliminate the un-modeled systematic error, the Empirical Mode Decomposition (EMD) theory is employed. The multi-scale decomposition and reconstruction architecture are defined here on the basis of the EMD theory and the systematic error mitigation model is demonstrated as well. A standard of the scale selection for the systematic error elimination is given in terms of the mean of the accumulated standardized modes. Thereafter, the scheme of the GPS/PLs baseline solution based on the EMD is suggested. The simulation and experiment results show that the precision factors (DOP) are reduced greatly when PLs is located suitably. The proposed scheme dramatically improves the reliability of ambiguity resolution and the precision of baseline vector after systematic error being eliminated, and provides an effective model for high precision slope deformation monitoring in open-pit mine.
基金Project(50974041) supported by the National Natural Science Foundation of ChinaProject(20090042120040) supported by the Doctoral Program Foundation of the Ministry of Education, ChinaProject(20093910) supported by the Natural Science Foundation of Liaoning Province, China
文摘Three important aspects of phase-mining must be optimized:the number of phases,the geometry and location of each phase-pit(including the ultimate pit),and the ore and waste quantities to be mined in each phase.A model is presented,in which a sequence of geologically optimum pits is first generated and then dynamically evaluated to simultaneously optimize the above three aspects,with the objective of maximizing the overall net present value.In this model,the dynamic nature of the problem is fully taken into account with respect to both time and space,and is robust in accommodating different pit wall slopes and different bench heights.The model is applied to a large deposit consisting of 2044 224 blocks and proved to be both efficient and practical.
文摘Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.
文摘The components of dust-suppressant were determined based on the analysis on characteristics and mechanisms of road dust raising in open-pit mines. The components were initially selected from moisture agent, coagulation agent and surfactant. The optimal formulation was determined based on orthogonal test and using the water loss rate as the evaluation index. The performances of moisture releasing and adsorption, wind resistance of optimal formulation in the natural environment were tested. The results show that the formula obtained in experiments provide a good performance of moisture absorption and water retention, and it also had a good dust preventing and controlling performance due to its high surface strength and consolidation under dry conditions. It has good application prospects considering the wide variety of sources for materials and the simple preparation process.
基金the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing(No.SKLGDUEK1923)Special fund for basic scientific research of central universities(Grant no:2013QZ04).
文摘In light of the complex and dynamic mechanical properties of evolving weak strata in open-pit mines,and the consequent difficulty of determining their mechanical parameters,this study uses the ultimate balance theory,along with the back analysis method combined with monitoring data on field displacement,to carry out parameter inversion using the FLAC3D numerical simulation software.The edge slope of a working pit of the Weijiamao open-pit mine was used as research object to this end.As the results obtained by the constitutive model were consistent with the field monitoring data,the evolving weak strata in the slope and the position of the landslide in the mine could be obtained.The landslide was directed northeast.The mechanism of the edge slope of the working pit was identified as unloading shear failure,and the feasibility of the method of parameter inversion was verified.The internal friction angle φand cohesion C of evolving weak strata in the slope of the open-pit mine were also obtained,where this compensated for the deficiency of laboratory tests and enabled the transformation from qualitative to quantitative analysis.This can provide a reliable basis for the safe operation of open-pit mines.
基金Project(51274023) supported by the National Natural Science Foundation of ChinaProject(FRF-BD-17-007A) supported by Fundamental Research Funds for the Central Universities,China
文摘In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of these air pollutants, the distributed regularity of the rock face temperature which is directly related to the air ventilation in deep open-pit mines should be studied. Here, we establish the key factors influencing the rock face temperature in a deep open-pit mine. We also present an empirical model of the rock face temperature variation in the deep open-pit mine, of which the performance is interestingly high compared with that of the field test. This study lays a foundation to study the ventilation thermodynamic theory in the deep open-pit mine, which is of great importance for theoretical studies and engineering applications of solving air pollution problem in deep open-pit mines.
基金Project 1053G032 supported by the Youth Science Foundation of Educational Committee of Heilongjiang Province
文摘Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.