This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML trai...This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM.展开更多
The co-articulation is one of the main reasons that makes the speech recognition difficult. However, the traditional Hidden Markov Models(HMM) can not model the co-articulation, because they depend on the first-order ...The co-articulation is one of the main reasons that makes the speech recognition difficult. However, the traditional Hidden Markov Models(HMM) can not model the co-articulation, because they depend on the first-order assumption. In this paper, for modeling the co-articulation, a more perfect HMM than traditional first order HMM is proposed on the basis of the authors’ previous works(1997, 1998) and they give a method in that this HMM is used in continuous speech recognition by means of multilayer perceptrons(MLP), i.e. the hybrid HMM/MLP method with triple MLP structure. The experimental result shows that this new hybrid HMM/MLP method decreases error rate in comparison with authors’ previous works.展开更多
文摘This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM.
文摘The co-articulation is one of the main reasons that makes the speech recognition difficult. However, the traditional Hidden Markov Models(HMM) can not model the co-articulation, because they depend on the first-order assumption. In this paper, for modeling the co-articulation, a more perfect HMM than traditional first order HMM is proposed on the basis of the authors’ previous works(1997, 1998) and they give a method in that this HMM is used in continuous speech recognition by means of multilayer perceptrons(MLP), i.e. the hybrid HMM/MLP method with triple MLP structure. The experimental result shows that this new hybrid HMM/MLP method decreases error rate in comparison with authors’ previous works.