Aminopropyltriethoxysilane (AM), 3-ethyldiaminopropyltrimethoxysilane (ED) and 3-piperazinylpropyltriethoxysilane (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like m...Aminopropyltriethoxysilane (AM), 3-ethyldiaminopropyltrimethoxysilane (ED) and 3-piperazinylpropyltriethoxysilane (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The increase in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.展开更多
A solid acid catalyst of zirconium sulfate (ZS) on a pure hexagonal mesoporous silica (HMS) sieve was prepared and characterized by small angle X-ray diffraction, NH3-temperature programmed desorption, and thermogravi...A solid acid catalyst of zirconium sulfate (ZS) on a pure hexagonal mesoporous silica (HMS) sieve was prepared and characterized by small angle X-ray diffraction, NH3-temperature programmed desorption, and thermogravimetric analysis. The obtained ZS/HMS catalyst displayed a typical mesoporous structure, ZS was well dispersed on the HMS support, and the acidity increased with the amount of ZS loading. Gossypol was extracted from cottonseed cake with acetone as solvent, and then the gossypol solution was esterified with ZS/HMS as catalyst to yield products of acetic acid gossypol. Under the optimal conditions, the conversion efficiency of gossypol was as high as 96.7%.展开更多
Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method a...Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method and applied for RWGS reaction.At certain reaction temperatures 500-750℃,Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst.This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst.NiCe-HMS exhibited higher activity compared to Ni-HMS.The catalysts were characterized by means of TEM,XPS,XRD,H_(2)-TPR,CO_(2)-TPD,EPR and N_(2) adsorption-desortion technology.It was found that introduction of Ce created high concentration of oxygen vacancies,served as the active site for activating CO_(2).Also,this work analyzed the effect of the H_(2)/CO_(2)molar ratio on the best NiCe-HMS.When reaction gas H_(2)/CO_(2)molar ratio was 4 significantly decreased the selectivity to CO at low temperature,but triggered a higher CO_(2)conversion which is close to the equilibrium.展开更多
文摘Aminopropyltriethoxysilane (AM), 3-ethyldiaminopropyltrimethoxysilane (ED) and 3-piperazinylpropyltriethoxysilane (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The increase in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.
文摘A solid acid catalyst of zirconium sulfate (ZS) on a pure hexagonal mesoporous silica (HMS) sieve was prepared and characterized by small angle X-ray diffraction, NH3-temperature programmed desorption, and thermogravimetric analysis. The obtained ZS/HMS catalyst displayed a typical mesoporous structure, ZS was well dispersed on the HMS support, and the acidity increased with the amount of ZS loading. Gossypol was extracted from cottonseed cake with acetone as solvent, and then the gossypol solution was esterified with ZS/HMS as catalyst to yield products of acetic acid gossypol. Under the optimal conditions, the conversion efficiency of gossypol was as high as 96.7%.
基金the Chengdu University of Technology Teachers Development Research Fund (No. 10912-2019KYQD07266)National Natural Science Foundation of China (No. 21806015) for financial support
文摘Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method and applied for RWGS reaction.At certain reaction temperatures 500-750℃,Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst.This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst.NiCe-HMS exhibited higher activity compared to Ni-HMS.The catalysts were characterized by means of TEM,XPS,XRD,H_(2)-TPR,CO_(2)-TPD,EPR and N_(2) adsorption-desortion technology.It was found that introduction of Ce created high concentration of oxygen vacancies,served as the active site for activating CO_(2).Also,this work analyzed the effect of the H_(2)/CO_(2)molar ratio on the best NiCe-HMS.When reaction gas H_(2)/CO_(2)molar ratio was 4 significantly decreased the selectivity to CO at low temperature,but triggered a higher CO_(2)conversion which is close to the equilibrium.