In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along ...In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along two edges of the substrate walls.To realize a bandpassfilter,secondary shorting vias are placed close to primary shorting vias.The dimension and position of the vias are carefully analyzed for Ku band frequencies.The model is fabricated on Roger RT/duroid 5880 and the performance characteristics are measured.The proposed model achieves significant impedance characteristics with wider bandwidth in the Ku band.The model also achieves a maximum gain of 7.46 dBi in the operating band thus making it suitable for Ku-band applications.Substrate Integrated Waveguide(SIW)Structures possess most of the advantages over conventional radiofrequency waveguides since they have high power management capacity with self-consistent electrical shielding.The most noteworthy advantage of SIW,it can able to integrate all the components on the same substrate,both passive and active components.展开更多
In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the pr...In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.展开更多
In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is ob...In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.展开更多
近年来,在微波系统中,基片集成波导(SIW)谐振腔作为一种新型导波结构倍受青睐,SIW的小型化也成为一个研究热点。提出了一款基于半模基片集成波导(HMSIW)的新型右旋圆极化缝隙天线,SIW的腔体结构呈半圆弧型,在腔体顶部蚀刻垂直缝隙使其...近年来,在微波系统中,基片集成波导(SIW)谐振腔作为一种新型导波结构倍受青睐,SIW的小型化也成为一个研究热点。提出了一款基于半模基片集成波导(HMSIW)的新型右旋圆极化缝隙天线,SIW的腔体结构呈半圆弧型,在腔体顶部蚀刻垂直缝隙使其宽度相等、长度不同,介质基板的底端利用一个50Ω的单级嵌入式微带馈线完成激励。经HFSS仿真结果显示,右旋半模圆极化天线中心频率为9.49 GHz,VSWR在该频点处为1.08,最大增益能够达到4.63 d B。通过实物加工制作以及测试,结果显示,与传统圆极化天线相比,该设计天线的面积尺寸减小了近50%,小型化实现良好,并且性能与仿真结果基本吻合。展开更多
文摘In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along two edges of the substrate walls.To realize a bandpassfilter,secondary shorting vias are placed close to primary shorting vias.The dimension and position of the vias are carefully analyzed for Ku band frequencies.The model is fabricated on Roger RT/duroid 5880 and the performance characteristics are measured.The proposed model achieves significant impedance characteristics with wider bandwidth in the Ku band.The model also achieves a maximum gain of 7.46 dBi in the operating band thus making it suitable for Ku-band applications.Substrate Integrated Waveguide(SIW)Structures possess most of the advantages over conventional radiofrequency waveguides since they have high power management capacity with self-consistent electrical shielding.The most noteworthy advantage of SIW,it can able to integrate all the components on the same substrate,both passive and active components.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
基金This work was supported by the National Key research and development program of China(No.2021YFB 2900401)the national natural science foundation of China(No.62361057,No.61861046)+1 种基金the key natural science foundation of Shenzhen(No.JCYJ20220818102209020)the key research and development program of Shenzhen(No.ZDSYS20210623091807023).
文摘In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.
文摘近年来,在微波系统中,基片集成波导(SIW)谐振腔作为一种新型导波结构倍受青睐,SIW的小型化也成为一个研究热点。提出了一款基于半模基片集成波导(HMSIW)的新型右旋圆极化缝隙天线,SIW的腔体结构呈半圆弧型,在腔体顶部蚀刻垂直缝隙使其宽度相等、长度不同,介质基板的底端利用一个50Ω的单级嵌入式微带馈线完成激励。经HFSS仿真结果显示,右旋半模圆极化天线中心频率为9.49 GHz,VSWR在该频点处为1.08,最大增益能够达到4.63 d B。通过实物加工制作以及测试,结果显示,与传统圆极化天线相比,该设计天线的面积尺寸减小了近50%,小型化实现良好,并且性能与仿真结果基本吻合。