In this experiment, Cu<sup>2+</sup> doped ZnO (Cu-ZnO) nanorods materials have been fabricated by hydrothermal method. Cu<sup>2+</sup> ions were doped into ZnO with ratios of 2, 5 and 7 mol.% (...In this experiment, Cu<sup>2+</sup> doped ZnO (Cu-ZnO) nanorods materials have been fabricated by hydrothermal method. Cu<sup>2+</sup> ions were doped into ZnO with ratios of 2, 5 and 7 mol.% (compared to the mole’s number of Zn<sup>2+</sup>). The hexamethylenetetramine (HMTA) solvent used for the fabrication of Cu-ZnO nanorods with the mole ratio of Zn<sup>2+</sup>:HMTA = 1:4. The characteristics of the materials were analyzed by techniques, such as XRD, Raman shift, SEM and UV-vis diffuse reflectance spectra (DRS). The photocatalytic properties of the materials were investigated by the decomposition of the methylene blue (MB) dye solution under ultraviolet light. The results show that the size of Cu-ZnO nanorods was reduced when the Cu<sup>2+</sup> doping ratio increased from 2 mol.% to 7 mol.%. The decomposition efficiency of the MB dye solution reached 92% - 97%, corresponding to the Cu<sup>2+</sup> doping ratio changed from 2 - 7 mol.% (after 40 minutes of ultraviolet irradiation). The highest efficiency for the decomposition of the MB solution was obtained at a Cu<sup>2+</sup> doping ratio of 2 mol.%.展开更多
The as precursor, HMTA as fuel material and non-ionic surfactant (Triton-X 100). The X-Ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The ZnO powder shows ...The as precursor, HMTA as fuel material and non-ionic surfactant (Triton-X 100). The X-Ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The ZnO powder shows polycrystalline nature having the crystallite size 21.25 nm. Crystallite size is calculated using Debye-Scherrer’s and Williamson-Hall equations. Porosity, Cell Volume, Micro strain, Morphology Index, Lorentz factor and Lorentz Polarization factor are also studied. From differential thermal analysis (DTA) & thermo gravimetric (TGA) it has been confirmed that nano powder has the phase purity. The weight loss percentage of the sample is 2.8385%. The particle size obtained 29 nm is in good agreement with the crystallite size calculated from X-Ray Diffraction pattern with the Particle Size Analyzer. The morphology of as prepared Zinc oxide nanopowders are characterized by scanning electron microscope (SEM). From specific area electron diffraction (SAED) pattern has specified the d-spacing and corresponding planes which coincide with the XRD d-spacing and planes.展开更多
文摘In this experiment, Cu<sup>2+</sup> doped ZnO (Cu-ZnO) nanorods materials have been fabricated by hydrothermal method. Cu<sup>2+</sup> ions were doped into ZnO with ratios of 2, 5 and 7 mol.% (compared to the mole’s number of Zn<sup>2+</sup>). The hexamethylenetetramine (HMTA) solvent used for the fabrication of Cu-ZnO nanorods with the mole ratio of Zn<sup>2+</sup>:HMTA = 1:4. The characteristics of the materials were analyzed by techniques, such as XRD, Raman shift, SEM and UV-vis diffuse reflectance spectra (DRS). The photocatalytic properties of the materials were investigated by the decomposition of the methylene blue (MB) dye solution under ultraviolet light. The results show that the size of Cu-ZnO nanorods was reduced when the Cu<sup>2+</sup> doping ratio increased from 2 mol.% to 7 mol.%. The decomposition efficiency of the MB dye solution reached 92% - 97%, corresponding to the Cu<sup>2+</sup> doping ratio changed from 2 - 7 mol.% (after 40 minutes of ultraviolet irradiation). The highest efficiency for the decomposition of the MB solution was obtained at a Cu<sup>2+</sup> doping ratio of 2 mol.%.
文摘The as precursor, HMTA as fuel material and non-ionic surfactant (Triton-X 100). The X-Ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The ZnO powder shows polycrystalline nature having the crystallite size 21.25 nm. Crystallite size is calculated using Debye-Scherrer’s and Williamson-Hall equations. Porosity, Cell Volume, Micro strain, Morphology Index, Lorentz factor and Lorentz Polarization factor are also studied. From differential thermal analysis (DTA) & thermo gravimetric (TGA) it has been confirmed that nano powder has the phase purity. The weight loss percentage of the sample is 2.8385%. The particle size obtained 29 nm is in good agreement with the crystallite size calculated from X-Ray Diffraction pattern with the Particle Size Analyzer. The morphology of as prepared Zinc oxide nanopowders are characterized by scanning electron microscope (SEM). From specific area electron diffraction (SAED) pattern has specified the d-spacing and corresponding planes which coincide with the XRD d-spacing and planes.