在异丙醇水溶液中以钛酸丁酯为钛源,MoS2为敏化剂,硅藻土为负载剂,通过溶胶-凝胶法和水热法制备TiO2/MoS2@硅藻土的复合光催化剂。通过傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、漫反射光谱(DRS)、扫描电镜(SEM)和N2吸附-脱附对催化剂组...在异丙醇水溶液中以钛酸丁酯为钛源,MoS2为敏化剂,硅藻土为负载剂,通过溶胶-凝胶法和水热法制备TiO2/MoS2@硅藻土的复合光催化剂。通过傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、漫反射光谱(DRS)、扫描电镜(SEM)和N2吸附-脱附对催化剂组成、形貌及结构进行分析,以亚甲基蓝(MB)为降解有机污染物目标,降解MB溶液前后的浓度比值(ct/c0)为评价指标,对催化剂种类及催化剂的用量进行了优化研究。结果表明,TiO2/MoS2@硅藻土复合催化剂稳定性高,催化活性强,1 mg/mL该复合催化剂降解50 mL 3~10 mg/L的MB溶液,ct/c0值范围为0.015~0.048。降解过程符合一级反应动力学Langmuir-Hinshelwood方程。展开更多
Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D ...Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D MoS2 lamellae were grown on the surface of the nanotubes and Ti^3+/Ov ions were introduced by reduction.The photocatalytic performance of the 2D MoS2/Ti^3+-TiO2 nanotubes was^15 times better than that of TiO2.The HER enhancement of the MoS2/Ti^3+-TiO2 nanotubes can be attributed to the Pt-like behavior of 2D MoS2 and the presence of Ti^3+-ions,which facilitated the quick diffusion of the photogenerated electrons to water,reducing the H2 activation barrier.The presence of Ov ions in the nanotubes and their hollow structure increased their solar utilization.展开更多
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult...TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.展开更多
文摘在异丙醇水溶液中以钛酸丁酯为钛源,MoS2为敏化剂,硅藻土为负载剂,通过溶胶-凝胶法和水热法制备TiO2/MoS2@硅藻土的复合光催化剂。通过傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、漫反射光谱(DRS)、扫描电镜(SEM)和N2吸附-脱附对催化剂组成、形貌及结构进行分析,以亚甲基蓝(MB)为降解有机污染物目标,降解MB溶液前后的浓度比值(ct/c0)为评价指标,对催化剂种类及催化剂的用量进行了优化研究。结果表明,TiO2/MoS2@硅藻土复合催化剂稳定性高,催化活性强,1 mg/mL该复合催化剂降解50 mL 3~10 mg/L的MB溶液,ct/c0值范围为0.015~0.048。降解过程符合一级反应动力学Langmuir-Hinshelwood方程。
文摘通过水解法制备TiO_2纳米颗粒,与经过超声处理后的MoS_2片层纳米材料复合制备MoS_2/TiO_2纳米催化剂,考察不同MoS_2负载量对其光催化降解苯酚效率及路径的影响。XRD、SEM、EDS、FT-IR和UV-vis DRS等表征结果表明,复合催化剂主要由锐钛矿型TiO_2和MoS_2组成;剥离后的MoS_2呈现薄片层状结构,均匀地分散在TiO_2纳米颗粒当中。光催化降解苯酚性能测试结果显示,对于MoS_2/TiO_2催化剂,MoS_2负载量的提高有利于光催化降解苯酚效率的提高;当MoS_2负载量为27%时,复合M o S2/TiO_2纳米颗粒的光催化性能最佳,反应80 min后可将苯酚完全降解。通过对苯酚降解过程中生成中间产物跟踪发现,MoS_2负载量的提高有利于促进中间产物苯醌、对苯二酚以及邻苯二酚的生成,进而提升了MoS_2/TiO_2复合材料的光催化性能。
基金supported by the National Natural Science Foundation of China(Grant Nos.51672249,51802282,and 11804301)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ17F040004 and LY17E020001)Fundamental Research Funds of Zhejiang Sci-Tech University(No.2019Q062)。
文摘Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D MoS2 lamellae were grown on the surface of the nanotubes and Ti^3+/Ov ions were introduced by reduction.The photocatalytic performance of the 2D MoS2/Ti^3+-TiO2 nanotubes was^15 times better than that of TiO2.The HER enhancement of the MoS2/Ti^3+-TiO2 nanotubes can be attributed to the Pt-like behavior of 2D MoS2 and the presence of Ti^3+-ions,which facilitated the quick diffusion of the photogenerated electrons to water,reducing the H2 activation barrier.The presence of Ov ions in the nanotubes and their hollow structure increased their solar utilization.
基金financially supported by the National Key R & D Projects (Nos. 2021YFC1910504, 2019YFC1907101, 2019YFC1907103, and 2017YFB0702304)the Key R & D Project in Ningxia Hui Autonomous Region, China (No. 2020BCE01001)+6 种基金the Key and Normal Projects National Natural Science Foundation of China (Nos. U2002212 and 51672024)the Xijiang Innovation and Entrepreneurship Team (No. 2017A0109004)the Fundamental Research Funds for the Central Universities (Nos. FRF-BD-20-24A, FRF-TP-20-031A1, FRF-IC-19-017Z, FRF-GF-19-032B, and 06500141)the Integration of Green Key Process Systems MIIT, Natural Science Foundation of Beijing Municipality (No. 2214073)the Guangdong Basic and Applied Research Foundation, China (No. 2020A1515110408)the Foshan Science and Technology Innovation Special Foundation, China (No. BK21BE002)the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH004)
文摘TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.