期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进深度卷积网络的铁路入侵行人分类算法
被引量:
20
1
作者
郭保青
王宁
《光学精密工程》
EI
CAS
CSCD
北大核心
2018年第12期3040-3050,共11页
异物侵入铁路限界严重影响行车安全,识别铁路限界内的人员侵入对保证铁路运营安全具有重要意义。由于既有铁路图像异物侵入检测系统只能检测报警图像,无法区分是人员侵入的正确报警还是光线干扰导致的误报警,为了降低上述误报警,本文建...
异物侵入铁路限界严重影响行车安全,识别铁路限界内的人员侵入对保证铁路运营安全具有重要意义。由于既有铁路图像异物侵入检测系统只能检测报警图像,无法区分是人员侵入的正确报警还是光线干扰导致的误报警,为了降低上述误报警,本文建立了铁路异物侵限报警样本的训练集和测试集,提出了将改进的深度卷积网络提取的高层Alex特征和HOG特征相结合并用于深度卷积网络模型训练的分类算法。首先引入了改进的AlexNet深度卷积神经网络模型,提取了自动学习的Alex高层特征,然后将其与HOG特征相结合形成Alex-HOG组合特征,最后利用组合特征对分类网络进行训练。铁路异物侵限报警测试样本库的实验表明,该方法对1 498张测试样本图像的识别准确率高达98.46%,时间为3.78s,实时性和准确率均有较大提高,对降低系统误报率具有重大意义。
展开更多
关键词
铁路异物分类识别
行人检测
深度卷积网络
hog组合特征
下载PDF
职称材料
题名
基于改进深度卷积网络的铁路入侵行人分类算法
被引量:
20
1
作者
郭保青
王宁
机构
北京交通大学机械与电子控制工程学院
北京交通大学载运工具先进制造与测控技术教育部重点实验室
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2018年第12期3040-3050,共11页
基金
国家重点研发计划资助项目(No.2016YFB1200402)
铁路总公司重点研发计划资助项目(No.2017T001-B)
国家留学基金委员会资助项目(No.201707095075)
文摘
异物侵入铁路限界严重影响行车安全,识别铁路限界内的人员侵入对保证铁路运营安全具有重要意义。由于既有铁路图像异物侵入检测系统只能检测报警图像,无法区分是人员侵入的正确报警还是光线干扰导致的误报警,为了降低上述误报警,本文建立了铁路异物侵限报警样本的训练集和测试集,提出了将改进的深度卷积网络提取的高层Alex特征和HOG特征相结合并用于深度卷积网络模型训练的分类算法。首先引入了改进的AlexNet深度卷积神经网络模型,提取了自动学习的Alex高层特征,然后将其与HOG特征相结合形成Alex-HOG组合特征,最后利用组合特征对分类网络进行训练。铁路异物侵限报警测试样本库的实验表明,该方法对1 498张测试样本图像的识别准确率高达98.46%,时间为3.78s,实时性和准确率均有较大提高,对降低系统误报率具有重大意义。
关键词
铁路异物分类识别
行人检测
深度卷积网络
hog组合特征
Keywords
railway objects classification and identification
pedestrian detection
deep convolutional network
hog
combined features
分类号
TP391 [自动化与计算机技术—计算机应用技术]
U216.3 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进深度卷积网络的铁路入侵行人分类算法
郭保青
王宁
《光学精密工程》
EI
CAS
CSCD
北大核心
2018
20
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部