人群异常事件检测是智能视频监控中的重要研究内容,本文提出一种新的融合时空特征的异常行为检测算法。首先提取显著性信息作为空间域特征,采用高精度的光流算法,结合社会力模型计算相互作用力作为时域特征;提出一种新的运动信息特征描...人群异常事件检测是智能视频监控中的重要研究内容,本文提出一种新的融合时空特征的异常行为检测算法。首先提取显著性信息作为空间域特征,采用高精度的光流算法,结合社会力模型计算相互作用力作为时域特征;提出一种新的运动信息特征描述子——相互作用力直方图(HOIF),将其与显著性信息特征相融合送入支持向量机(SVM)进行学习训练,从而对人群事件进行分类。在UMN(University of Minnesota,Twin Cities)数据库上对本文算法有效性进行了验证。实验结果表明,该算法在检测正确率及鲁棒性上要优于其他算法。展开更多
文摘人群异常事件检测是智能视频监控中的重要研究内容,本文提出一种新的融合时空特征的异常行为检测算法。首先提取显著性信息作为空间域特征,采用高精度的光流算法,结合社会力模型计算相互作用力作为时域特征;提出一种新的运动信息特征描述子——相互作用力直方图(HOIF),将其与显著性信息特征相融合送入支持向量机(SVM)进行学习训练,从而对人群事件进行分类。在UMN(University of Minnesota,Twin Cities)数据库上对本文算法有效性进行了验证。实验结果表明,该算法在检测正确率及鲁棒性上要优于其他算法。