期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Homeoprotein SIX1 compromises antitumor immunity through TGF-β-mediated regulation of collagens
1
作者 Wancheng Liu Meiling Gao +9 位作者 Lili Li Yu Chen Huimin Fan Qiaomei Cai Yueyue Shi Chaohu Pan Junxiao Liu Lucy S.Cheng Heng Yang Genhong Cheng 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2021年第12期2660-2672,共13页
The tumor microenvironment(TME),including infiltrated immune cells,is known to play an important role in tumor growth;however,the mechanisms underlying tumor immunogenicity have not been fully elucidated.Here,we disco... The tumor microenvironment(TME),including infiltrated immune cells,is known to play an important role in tumor growth;however,the mechanisms underlying tumor immunogenicity have not been fully elucidated.Here,we discovered an unexpected role for the transcription factor SIX1 in regulating the tumor immune microenvironment.Based on analyses of patient datasets,we found that SIX1 was upregulated in human tumor tissues and that its expression levels were negatively correlated with immune cell infiltration in the TME and the overall survival rates of cancer patients.Deletion of Six1 in cancer cells significantly reduced tumor growth in an immune-dependent manner with enhanced antitumor immunity in the TME.Mechanistically,SIX1 was required for the expression of multiple collagen genes via the TGFBR2-dependent Smad2/3 activation pathway,and collagen deposition in the TME hampered immune cell infiltration and activation.Thus,our study uncovers a crucial role for SIX1 in modulating tumor immunogenicity and provides proof-of-concept evidence for targeting SIX1 in cancer immunotherapy. 展开更多
关键词 homeoprotein SIX1 anti-tumor immunity collagens.
原文传递
Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog 被引量:22
2
作者 GUANGJinPAN DUANQINGPEI 《Cell Research》 SCIE CAS CSCD 2003年第6期499-502,共4页
Nanog is a newly identified homeodomain gene that functions to sustain the pluripotency of embryonic stem cells.However,the molecular mechanism through which nanog regulates stem cell pluripotency remains unknown.Mous... Nanog is a newly identified homeodomain gene that functions to sustain the pluripotency of embryonic stem cells.However,the molecular mechanism through which nanog regulates stem cell pluripotency remains unknown.Mouse nanog encodes a polypeptide of 305 residues with a divergent homeodomain similar to those in the NK-2 family.The rest ofnanog contains no apparent homology to any known proteins characterized so far.It is hypothesized that nanog encodes a transcription factor that regulates stem cell pluripotency by switching on or off target genes.To test this hypothesis,we constructed fusion proteins between nanog and DNA binding domains of the yeast transcription factor Gal4 and tested the transactivation potentials of these constructs.Our data demonstrate that both regions N- and C- terminal to the homeodomain have transcription activities.Despite the fact that it contains no apparent transactivation motifs,the C-terminal domain is about 7 times as active as the N-terminal one.This unique arrangement of dual transactivators may confer nanog the flexibility and specificity to regulate downstream genes critical for both pluripotency and differentiation of stem cells. 展开更多
关键词 NANOG PLURIPOTENCY stem cells self renewal transactivation domain homeoprotein HOMEODOMAIN
下载PDF
OTX2 stimulates adult retinal ganglion cell regeneration
3
作者 Raoul Torero Ibad Nicole Quenech’du +1 位作者 Alain Prochiantz Kenneth L.Moya 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期690-696,共7页
Retinal ganglion cell(RGC) axons provide the only link between the light sensitive and photon transducing neural retina and visual centers of the brain.RGC axon degeneration occurs in a number of blinding diseases and... Retinal ganglion cell(RGC) axons provide the only link between the light sensitive and photon transducing neural retina and visual centers of the brain.RGC axon degeneration occurs in a number of blinding diseases and the ability to stimulate axon regeneration from surviving ganglion cells could provide the anatomic substrate for restoration of vision.OTX2 is a homeoprotein transcription factor expressed in the retina and previous studies showed that,in response to stress,exogenous OTX2 increases the in vitro and in vivo survival of RGCs.Here we examined and quantified the effects of OTX2 on adult RGC axon regeneration in vitro and in vivo.The results show that exogenous OTX2 stimulates the regrowth of axons from RGCs in cultures of dissociated adult retinal cells and from explants of adult retinal tissue and that RGCs respond directly to OTX2 as regrowth is observed in cultures of purified adult rat RGCs.Importantly,after nerve crush in vivo,we observed a positive effect of OTX2 on the number of regenerating axons up to the optic chiasm within 14 days post crush and a very modest level of acuity absent in control mice.The effect of OTX2 on RGC survival and regeneration is of potential interest for degenerative diseases affecting this cell type.All animal procedures were approved by the local "Comié d'éιthique en expérimentation animale n°59" and authorization n° 00702.01 delivered March 28,2014 by the French "Ministére de l'enseignement supérieur et de la recherche". 展开更多
关键词 axon regeneration dissociated retinal culture GAP-43 homeoprotein optic nerve crush OTX2 retinal explants retinal ganglion cell
下载PDF
同源盒蛋白Msx1在骨形成蛋白-4成骨效应中的作用 被引量:2
4
作者 蒋少云 汪建涛 +1 位作者 宋萌 王建广 《口腔医学研究》 CAS CSCD 2007年第5期492-495,共4页
目的:研究同源盒蛋白Msx1在骨形成蛋白-4(bone morphogenetic protein-4,BMP-4)成骨效应中的作用,并探讨Msx1与BMP-4的调控关系。方法:体外培养成纤维细胞C2C12,BMP-4处理C2C12细胞24h和36h后,用携带Msx1基因的腺病毒转染C2C12细胞,过... 目的:研究同源盒蛋白Msx1在骨形成蛋白-4(bone morphogenetic protein-4,BMP-4)成骨效应中的作用,并探讨Msx1与BMP-4的调控关系。方法:体外培养成纤维细胞C2C12,BMP-4处理C2C12细胞24h和36h后,用携带Msx1基因的腺病毒转染C2C12细胞,过度表达同源盒蛋白Msx1,4d后检测细胞中碱性磷酸酶(alkalinephosphatase,ALP)的活性,单独用BMP-4处理组和BMP-4连同空白腺病毒组为对照组,未用BMP-4处理组为阴性对照组。结果:在BMP-4处理24h后,Msx1腺病毒转染的细胞ALP活性非常低,而BMP-4处理36h后,Msx1腺病毒转染的细胞显示强ALP活性,单独用BMP-4处理和BMP-4连同空白腺病毒处理的细胞同样显示强ALP活性。结论:同源盒蛋白Msx1能抑制BMP-4的成骨效应,且具有一定的时段特性。 展开更多
关键词 同源盒蛋白Msx1 骨形成蛋白-4 成骨
下载PDF
同源盒蛋白(Msx1)过度表达抑制成骨细胞碱性磷酸酶表达的实验研究 被引量:1
5
作者 蒋少云 汪建涛 宋萌 《口腔颌面外科杂志》 CAS 2008年第1期19-22,共4页
目的:观察同源盒蛋白(Msx1)过度表达在成骨细胞MC3T3-E1分化培养过程中对碱性磷酸酶的调节作用,以探讨Msx1蛋白对细胞成骨分化过程的调控机制。方法:将成骨细胞MC3T3-E1分为5组:未转染病毒组作为对照组1(A组);空白腺病毒载体组作为对照... 目的:观察同源盒蛋白(Msx1)过度表达在成骨细胞MC3T3-E1分化培养过程中对碱性磷酸酶的调节作用,以探讨Msx1蛋白对细胞成骨分化过程的调控机制。方法:将成骨细胞MC3T3-E1分为5组:未转染病毒组作为对照组1(A组);空白腺病毒载体组作为对照组2(B组);未分化组作为空白对照组(C组);分化前1 d转染携带同源盒基因Msx1的腺病毒载体组(D组);分化后1 d转染Msx1腺病毒载体组(E组)。在成骨分化培养基中培养4 d后,检测成骨细胞MC3T3-E1在成骨分化培养过程中碱性磷酸酶(alkaline phosphatase,ALP)的活性。结果:A、B两组成骨细胞MC3T3-E1在成骨分化培养基培养4 d后,ALP活性呈强阳性;C组中未分化成骨细胞MC3T3-E1无ALP活性,D、E两组的成骨细胞MC3T3-E1在成骨分化培养4 d后的ALP活性明显较A、B组减低,而且D、E两组间ALP活性无区别。结论:过度表达同源盒蛋白(Msx1)能抑制成骨细胞MC3T3-E1的ALP表达,在其成骨分化的过程中起一定的抑制作用。 展开更多
关键词 同源盒蛋白Msx1 成骨细胞 细胞分化
下载PDF
软骨同源蛋白1(CART1)敲低诱导MDA-MB-231乳腺癌细胞S期阻滞并抑制其侵袭和迁移 被引量:3
6
作者 管停宏 苏琳茜 易永芬 《细胞与分子免疫学杂志》 CAS CSCD 北大核心 2016年第4期474-478,共5页
目的运用外源性RNA干扰技术,敲低MDA-MB-231乳腺癌细胞中软骨同源蛋白1(CART1)基因的表达,研究CART1基因沉默后对MDA-MB-231细胞生物学行为的影响。方法采用人工合成的针对CART1基因的siRNA,用转染试剂RNAi MAX将CART1-siRNA转染MDA-MB-... 目的运用外源性RNA干扰技术,敲低MDA-MB-231乳腺癌细胞中软骨同源蛋白1(CART1)基因的表达,研究CART1基因沉默后对MDA-MB-231细胞生物学行为的影响。方法采用人工合成的针对CART1基因的siRNA,用转染试剂RNAi MAX将CART1-siRNA转染MDA-MB-231细胞。实时定量PCR检测转染后CART1 mRNA水平,Western blot法检测转染后CART1蛋白水平,TranswellTM侵袭实验检测MDA-MB-231细胞侵袭、CCK-8法检测细胞增殖、流式细胞术检测细胞周期的变化。结果 CART1-siRNA能有效沉默CART1在MDA-MB-231细胞中的表达,CART1沉默后MDA-MB-231细胞侵袭和增殖能力明显下降,S期细胞的比率增高而G2/M细胞比率减少。结论下调MDA-MB-231细胞CART1的表达,可降低其侵袭和增殖能力、诱导S期阻滞。 展开更多
关键词 乳腺癌 CART1 RNA干扰 侵袭 增殖 周期
下载PDF
同源异型框蛋白Msx1的两个新的磷酸化位点的鉴定 被引量:1
7
作者 程庆灵 王敬强 《生物技术通报》 CAS CSCD 北大核心 2016年第6期211-218,共8页
同源异型框蛋白Msx1的同系物Msx2中已鉴定出磷酸化修饰位点,并且发挥着重要的生物学功能。但是对Msx1的磷酸化修饰情况还不清楚,为了对Msx1的磷酸化修饰情况进行研究。利用生物信息学的方法对Msx1的磷酸化修饰位点进行预测,进一步利用... 同源异型框蛋白Msx1的同系物Msx2中已鉴定出磷酸化修饰位点,并且发挥着重要的生物学功能。但是对Msx1的磷酸化修饰情况还不清楚,为了对Msx1的磷酸化修饰情况进行研究。利用生物信息学的方法对Msx1的磷酸化修饰位点进行预测,进一步利用免疫沉淀和质谱技术对其进行具体实验验证。C2C12细胞中的Msx1蛋白复合物经胰蛋白酶消化后,通过高效液相色谱和质谱技术进行分离和分析。结果发现两个新的磷酸化修饰位点,分别是152位的丝氨酸和160位的丝氨酸,而且两个磷酸化位点在人和小鼠中是高度保守的。进一步,制备针对这两个磷酸化位点的特异性磷酸化抗体。磷酸化位点的鉴定以及特异性抗体的获得为进一步研究Msx1的生物学功能提供了良好的条件。 展开更多
关键词 同源异型框蛋白 MSX1 磷酸化修饰 质谱鉴定
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部