Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and str...Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and stripes, were observed in thin graphite flakes that were mechanically peeled from highly oriented pyrolytic graphite. In this paper, a theoretical model is presented to attribute the formation of such ordered structures to the alternation of two mechanical processes during the exfoliation: (1) peeling of a graphite flake and (2) mechanical buckling of the flake being sub- jected to bending. In this model, the width of the stripes L is determined by thickness h of the flakes, surface energy Y, and critical buckling strain ecr. Using some appropriate values of y and ecr that are within the ranges determined by other inde- pendent experiments and simulations, the predicted relations between the stripe width and the flake thickness agree reason- ably well with our experimental measurements. Conversely, measuring the L-h relations of the periodic microstructures in thin graphite flakes could help determine the critical mechan- ical buckling strain εcr and the interface energy γ.展开更多
Moiré patterns on HOPG were studied with scanning tunneling microscopy (STM). The results reveal that the observed Moiré patterns originate from the defects locating several layers below the surface, which...Moiré patterns on HOPG were studied with scanning tunneling microscopy (STM). The results reveal that the observed Moiré patterns originate from the defects locating several layers below the surface, which presents the first experimental evidence supporting the prediction that in HOPG the nanoscale electronic waves can propagate through several layers without obvious decay.展开更多
Cobalt nanoparticles on the surface of highly oriented pyrolytic graphite have been studied by atomic force microscopy. Thermal annealing in ultrahigh vacuum was used to change the size of cobalt nanoparticles and the...Cobalt nanoparticles on the surface of highly oriented pyrolytic graphite have been studied by atomic force microscopy. Thermal annealing in ultrahigh vacuum was used to change the size of cobalt nanoparticles and their surface distribution. The effect of two key parameters, annealing time and temperature, on the size and the surface distribution of nanoparticles has been studied. The dependence of the particle size on these parameters has been obtained. It has been shown that the main mechanism of the nanoparticle growth is Ostwald ripening.展开更多
基金financia support from NSFC(Grant 10832005)the National Basic Research Program of China(Grant 2007CB936803)+1 种基金the National 863 Project(Grant2008AA03Z302)the support from the engineering faculty of Monash University through seed grant 2014
文摘Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and stripes, were observed in thin graphite flakes that were mechanically peeled from highly oriented pyrolytic graphite. In this paper, a theoretical model is presented to attribute the formation of such ordered structures to the alternation of two mechanical processes during the exfoliation: (1) peeling of a graphite flake and (2) mechanical buckling of the flake being sub- jected to bending. In this model, the width of the stripes L is determined by thickness h of the flakes, surface energy Y, and critical buckling strain ecr. Using some appropriate values of y and ecr that are within the ranges determined by other inde- pendent experiments and simulations, the predicted relations between the stripe width and the flake thickness agree reason- ably well with our experimental measurements. Conversely, measuring the L-h relations of the periodic microstructures in thin graphite flakes could help determine the critical mechan- ical buckling strain εcr and the interface energy γ.
文摘Moiré patterns on HOPG were studied with scanning tunneling microscopy (STM). The results reveal that the observed Moiré patterns originate from the defects locating several layers below the surface, which presents the first experimental evidence supporting the prediction that in HOPG the nanoscale electronic waves can propagate through several layers without obvious decay.
文摘Cobalt nanoparticles on the surface of highly oriented pyrolytic graphite have been studied by atomic force microscopy. Thermal annealing in ultrahigh vacuum was used to change the size of cobalt nanoparticles and their surface distribution. The effect of two key parameters, annealing time and temperature, on the size and the surface distribution of nanoparticles has been studied. The dependence of the particle size on these parameters has been obtained. It has been shown that the main mechanism of the nanoparticle growth is Ostwald ripening.