This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software(LabSOCS)-and ANGLE-based methods in ...This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software(LabSOCS)-and ANGLE-based methods in an inter-comparison exercise. Although the results of LabSOCS and ANGLE for ^(241)Am emitting lowenergy gamma rays were not very satisfactory, all of the three efficiency calibration methods passed acceptance criteria. The results confirmed the reliability of the calculation codes ANGLE and LabSOCS as alternative efficiency calibration methods in high-purity-germanium gamma spectrometry. This study is likely to promote the further application of the ANGLE and LabSOCS calculation codes in radioactivity measurements.展开更多
In this study, the Maastrichtian-Danian boundary was measured and sampled in two stratigraphic sections, the north and south flanks of the Dehnow anticline in Coastal Fars, Southern Iran. This boundary was also invest...In this study, the Maastrichtian-Danian boundary was measured and sampled in two stratigraphic sections, the north and south flanks of the Dehnow anticline in Coastal Fars, Southern Iran. This boundary was also investigated in the drilled exploratory well-1 in the same region. The lithology of the Maastrichtian-Danian deposits consists of glauconitic, phosphatic argillaceous limestones and marlstones. 30 genera and 77 species of planktonic foraminifera have been determined. The recognized biozones are the Gansserina gansseri Interval Zone, and the Contusotruncana contusa Interval Zone, which indicates latest Campanian to middle Maastrichtian age for the upper part of the Gurpi Formation. In addition, the Eoglobigerina edita(P1) Partial Range Zone, Praemurica uncinata(P2) Lowest Occurrence Zone, Morozovella angulata(P3) Lowest Occurrence Zone and Globanomalina psudomenardii(P4) Taxon Range Zone represent a Danian to Thanetian age for the lower part of the Pabdeh Formation. From the absence of the Abathomphalus mayaroensis Interval Zone, Pseudoguembelina hariaensis Interval Zone, Pseudotextularia elegans Interval Zone, Plummerita hantkeninoides Interval Zone, Guembelitria cretacea(P0) Partial Range Zone and Parvularugoglobigerina eugubina(Pα) Total Range Zone, it can be deduced that there is a paraconformity across the Maastrichtian–Danian boundary in the studied area, this hiatus encompassing the late Maastrichtian and the earliest Danian. Danian deposits from the study area contain reworked glauconitized macrofossils, planktonic and benthic foraminifera of the Cretaceous. The obtained surface gamma-ray spectrometry logs resemble the exploratory well-1 gamma-ray wireline log.展开更多
In this study,the theory of minimum detectable activity concentration(MDAC)for airborne gamma-ray spectrometry(AGS)was derived,and the relationship between the MDAC and the intrinsic effi-ciency of a scintillation cou...In this study,the theory of minimum detectable activity concentration(MDAC)for airborne gamma-ray spectrometry(AGS)was derived,and the relationship between the MDAC and the intrinsic effi-ciency of a scintillation counter,volume,and energy res-olution of scintillation crystals,and flight altitude of an aircraft was investigated.To verify this theory,experi-mental devices based on NaI and CeBr 3 scintillation counters were prepared,and the potassium,uranium,and thorium contents in calibration pads obtained via the stripping ratio method and theory were compared.The MDACs of AGS under different conditions were calculated and analyzed using the proposed theory and the Monte Carlo method.The relative errors found via a comparison of the experimental and theoretical results were less than 4%.The theory of MDAC can guide the work of AGS in probing areas with low radioactivity.展开更多
Low background gamma spectrometry was used to measure the radionuclides activity of <sup>238</sup>U, <sup>232</sup>Th, and <sup>235</sup>U series as well as <sup>40</sup>...Low background gamma spectrometry was used to measure the radionuclides activity of <sup>238</sup>U, <sup>232</sup>Th, and <sup>235</sup>U series as well as <sup>40</sup>K and <sup>137</sup>Cs in a sediment sample. The goal of the study was to measure the <sup>238</sup>U (63.3 keV peak of <sup>234</sup>Th;1001 keV peak of <sup>234m</sup>Pa) and <sup>235</sup>U (143.76 keV, 163.33 keV, and 205.31 keV peaks) activity by low background gamma spectrometry in sediment sample. <sup>235</sup>U activity in environmental samples is difficult to accurately measure by gamma spectrometry due to its low abundance in nature and low gamma line intensities at 143.76 keV, 163.33 keV, and 205.31 keV. We have shown that by using low background gamma spectrometry, it is possible to accurately measure the <sup>235</sup>U activity in sediment samples. The <sup>235</sup>U activity was measured without using the major peak of 185.7 keV (I<sub>γ</sub> = 57.2%) which requires interference correction from 186.21 keV of <sup>226</sup>Ra. <sup>226</sup>Ra activity was determined by measuring <sup>222</sup>Rn daughters (<sup>214</sup>Pb and <sup>214</sup>Bi). The precision and accuracy of the gamma activity measurement in the sediment sample were verified by using the HPGe detectors with Certified Reference Material (CRM) Irish Sea Sediment (IAEA-385). The results obtained for the 63.33 keV energy line of <sup>234</sup>Th are compared with the 1001 keV energy line of <sup>234m</sup>Pa. The values of <sup>238</sup>U and <sup>235</sup>U activities, as well as <sup>40</sup>K, <sup>137</sup>Cs, and <sup>226</sup>Ra, agreed with the certificate values of CRM. The results show that the <sup>238</sup>U is in equilibrium with its daughters (<sup>234</sup>Th, <sup>234m</sup>Pa, and <sup>210</sup>Pb). <sup>232</sup>Th is also in equilibrium with its daughters (<sup>228</sup>Ra, <sup>212</sup>Pb, <sup>212</sup>Bi and <sup>208</sup>Tl). <sup>235</sup>U/<sup>238</sup>U activity ratio of 0.046 ± 0.007 in the sediment is constant in nature but fluctuates due to geological processes. A value of 0.055 ± 0.008 was found in our sediment sample.展开更多
Radium isotopes can be analyzed by different analytical methods based on gamma spectrometric measurements or alpha spectrometry. An improved method was developed to determine radium isotopes from water using gamma spe...Radium isotopes can be analyzed by different analytical methods based on gamma spectrometric measurements or alpha spectrometry. An improved method was developed to determine radium isotopes from water using gamma spectrometry after radiochemical separation. The Radium was selectively extracted from acidified samples using co-precipitation procedure with iron hydroxide and followed by precipitation of radium as radium sulphate Ba(Ra)SO4. The precipitate Ba(Ra)SO4 was filtered through the Millipore filter paper, dried and weighed to calculate chemical yield. 226Ra and 228Ra activities were measured using low-background gamma spectrometry in water samples. Radium was pre-concentrated from environmental samples by co-precipitation with BaSO4. The amounts of 226Ra and 228Ra on the sample were obtained by gamma-ray spectrometry for the 351 keVγ-ray from 214Pb and for the 911 keV γ-ray from 228Ac, both in radioactive equilibrium with precursors, respectively. The accuracy, selectivity, traceability, applicability and Minimum Detectable Activity (MDA) of the technique were discussed. Also, the effect of physical and chemical characteristics of the water samples such as TDS, pH, soluble species, sulphate and bicarbonate that effect on the radium determination were taking into consideration. The method has been validated with a certified reference material supplied by the International Atomic Energy Agency and reliable results were obtained. The radiochemical yields for radium were 70% - 90% and recovery was 97% and 80% for 226Ra and 228Ra, respectively.展开更多
Mexico is one of the largest producers of nopal (Opuntiaficus indica). This "vegetable" is consumed on a daily basis by the Mexican population, being a source of food nutrients. Among its benefits, it is considere...Mexico is one of the largest producers of nopal (Opuntiaficus indica). This "vegetable" is consumed on a daily basis by the Mexican population, being a source of food nutrients. Among its benefits, it is considered the content of potassium, which is essential for human life and health. In this study, it analyzes the content of potassium of the Mexican cactus (Opuntiaficus indica) grown in 5 different regions in the Mexican Basin, where 67% of the nopal is produced for human consumption. The used methodology is gamma spectrometry with Hyperpure Germanium detector (HPGe) and Multichannel Analyzer (MCA) with Maestro~ software. The results show interesting aspects on the concentration of potassium in the nopal. This concentration will primarily depend on: (a) the geological characteristics of the location where the nopal was grows; (b) that potassium concentrations may vary substantially from a region to another, with the same species of nopal as a reference and (c) that this concentration may also vary from one growing season to another.展开更多
Amaranthus is a dicotyledonous pseudocereal and one of the new world’s oldest crops,having originated from Meso-America and was a major food crop of the Aztecs.Popularity in the cultivation and consumption of Amarant...Amaranthus is a dicotyledonous pseudocereal and one of the new world’s oldest crops,having originated from Meso-America and was a major food crop of the Aztecs.Popularity in the cultivation and consumption of Amaranthus seed in the modern era began in the mid-1970s with the rediscovery and promotion of amaranth due to its superior nutritional attributes as compared to cereal grains.Amaranth plant has a high-quality protein,carbohydrates,unsaturated oil,squalene,dietary fiber,tocopherols,phenolic compounds,flavonoids,vitamins and minerals.The amaranth’s grain was collected at San Martin Pahuacan,Estado de Mexico,Mexico.The used methodology is gamma spectrometry with Hyperpure Germanium detector(HPGe)and Multichannel Analyzer(MCA)with Maestro software.The result shows a unique concentration of radioactive potassium content in the amaranth protein isolated from amaranth grains is 424.1 mg/100 g of amaranth protein.There is an excellent agreement between the amount of potassium determined by atomic absorption spectroscopy in our laboratory and the value obtained in this work using the Gamma Spectrometry Technique.展开更多
Gamma-ray spectrometry is a very powerful tool for radioactivity measurements. The gamma-ray spectrometer laboratory in Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Nigeria is accred...Gamma-ray spectrometry is a very powerful tool for radioactivity measurements. The gamma-ray spectrometer laboratory in Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Nigeria is accredited to perform measurements of radioactive content of samples collected from the environment, food chain or industrial products with the aid of a high resolution HPGe detector. For accurate gamma-ray spectrometry, certain measurements were considered;the efficiency of the detector was performed experimentally against energies within the range of 59.50 keV (241Am) to 2204.50 keV (226Ra) for the respective geometries of 1 - 6 cm. The sustained solid angle relations with respect to the inverse square of sample geometries from 1 - 6 cm were evaluated. Another main point of this work was focused on the efficiency at geometry of 5 cm with respect to the three selected energies: 661.60 keV (137Cs), 1173.2 keV (60Co) and 1332 keV (60Co) for the main axis, ten degree off main axis, forty five degree off main axis and ninety degree off the detector main axis. In order to verify optimum geometries in our laboratory for both short lived and long lived radionuclides analyses, the evaluation of efficiencies for the respective energies: 1173.2 keV (60Co), 1332.5 keV (60Co), 1764 keV (226Ra) and 2294 keV (226Ra) were plotted against geometries of 1 to 6 cm from the detector end cap along the main axis.展开更多
针对核电厂一回路系统管道内壁沉积的腐蚀活化产物,开展γ辐射源项就地测量技术研究。基于高纯锗探测器开发了辐射源项就地测量系统(Sterm-HPGe),利用蒙特卡罗软件进行了无源效率刻度,并开展了实验室效率验证工作。在300~1 408 ke V能...针对核电厂一回路系统管道内壁沉积的腐蚀活化产物,开展γ辐射源项就地测量技术研究。基于高纯锗探测器开发了辐射源项就地测量系统(Sterm-HPGe),利用蒙特卡罗软件进行了无源效率刻度,并开展了实验室效率验证工作。在300~1 408 ke V能量范围内,HPGe探测器在无准直器屏蔽和有准直器屏蔽情况下,点源全能峰效率计算值与测量值的相对偏差分别在±5%和±10%以内。测量系统在我国压水堆核电厂进行了现场应用,能够较准确地测量出管道内60Co、58Co、110mAg等典型沉积核素的源项活度,管道表面剂量率的计算值与测量值的相对偏差一般在±40%以内。展开更多
基金supported by the Support Program of the Ministry of Science and Technology(No.2014FY211000)the National Key Technology Research and Development Program(No.2013BAK03B05)
文摘This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software(LabSOCS)-and ANGLE-based methods in an inter-comparison exercise. Although the results of LabSOCS and ANGLE for ^(241)Am emitting lowenergy gamma rays were not very satisfactory, all of the three efficiency calibration methods passed acceptance criteria. The results confirmed the reliability of the calculation codes ANGLE and LabSOCS as alternative efficiency calibration methods in high-purity-germanium gamma spectrometry. This study is likely to promote the further application of the ANGLE and LabSOCS calculation codes in radioactivity measurements.
基金the University of Isfahan for providing financial support。
文摘In this study, the Maastrichtian-Danian boundary was measured and sampled in two stratigraphic sections, the north and south flanks of the Dehnow anticline in Coastal Fars, Southern Iran. This boundary was also investigated in the drilled exploratory well-1 in the same region. The lithology of the Maastrichtian-Danian deposits consists of glauconitic, phosphatic argillaceous limestones and marlstones. 30 genera and 77 species of planktonic foraminifera have been determined. The recognized biozones are the Gansserina gansseri Interval Zone, and the Contusotruncana contusa Interval Zone, which indicates latest Campanian to middle Maastrichtian age for the upper part of the Gurpi Formation. In addition, the Eoglobigerina edita(P1) Partial Range Zone, Praemurica uncinata(P2) Lowest Occurrence Zone, Morozovella angulata(P3) Lowest Occurrence Zone and Globanomalina psudomenardii(P4) Taxon Range Zone represent a Danian to Thanetian age for the lower part of the Pabdeh Formation. From the absence of the Abathomphalus mayaroensis Interval Zone, Pseudoguembelina hariaensis Interval Zone, Pseudotextularia elegans Interval Zone, Plummerita hantkeninoides Interval Zone, Guembelitria cretacea(P0) Partial Range Zone and Parvularugoglobigerina eugubina(Pα) Total Range Zone, it can be deduced that there is a paraconformity across the Maastrichtian–Danian boundary in the studied area, this hiatus encompassing the late Maastrichtian and the earliest Danian. Danian deposits from the study area contain reworked glauconitized macrofossils, planktonic and benthic foraminifera of the Cretaceous. The obtained surface gamma-ray spectrometry logs resemble the exploratory well-1 gamma-ray wireline log.
基金This work was supported by the Sichuan Science and Technology Program(No.2020JDRC0108)the National Science Foundation of China(Nos.41774147 and 41774190).
文摘In this study,the theory of minimum detectable activity concentration(MDAC)for airborne gamma-ray spectrometry(AGS)was derived,and the relationship between the MDAC and the intrinsic effi-ciency of a scintillation counter,volume,and energy res-olution of scintillation crystals,and flight altitude of an aircraft was investigated.To verify this theory,experi-mental devices based on NaI and CeBr 3 scintillation counters were prepared,and the potassium,uranium,and thorium contents in calibration pads obtained via the stripping ratio method and theory were compared.The MDACs of AGS under different conditions were calculated and analyzed using the proposed theory and the Monte Carlo method.The relative errors found via a comparison of the experimental and theoretical results were less than 4%.The theory of MDAC can guide the work of AGS in probing areas with low radioactivity.
文摘Low background gamma spectrometry was used to measure the radionuclides activity of <sup>238</sup>U, <sup>232</sup>Th, and <sup>235</sup>U series as well as <sup>40</sup>K and <sup>137</sup>Cs in a sediment sample. The goal of the study was to measure the <sup>238</sup>U (63.3 keV peak of <sup>234</sup>Th;1001 keV peak of <sup>234m</sup>Pa) and <sup>235</sup>U (143.76 keV, 163.33 keV, and 205.31 keV peaks) activity by low background gamma spectrometry in sediment sample. <sup>235</sup>U activity in environmental samples is difficult to accurately measure by gamma spectrometry due to its low abundance in nature and low gamma line intensities at 143.76 keV, 163.33 keV, and 205.31 keV. We have shown that by using low background gamma spectrometry, it is possible to accurately measure the <sup>235</sup>U activity in sediment samples. The <sup>235</sup>U activity was measured without using the major peak of 185.7 keV (I<sub>γ</sub> = 57.2%) which requires interference correction from 186.21 keV of <sup>226</sup>Ra. <sup>226</sup>Ra activity was determined by measuring <sup>222</sup>Rn daughters (<sup>214</sup>Pb and <sup>214</sup>Bi). The precision and accuracy of the gamma activity measurement in the sediment sample were verified by using the HPGe detectors with Certified Reference Material (CRM) Irish Sea Sediment (IAEA-385). The results obtained for the 63.33 keV energy line of <sup>234</sup>Th are compared with the 1001 keV energy line of <sup>234m</sup>Pa. The values of <sup>238</sup>U and <sup>235</sup>U activities, as well as <sup>40</sup>K, <sup>137</sup>Cs, and <sup>226</sup>Ra, agreed with the certificate values of CRM. The results show that the <sup>238</sup>U is in equilibrium with its daughters (<sup>234</sup>Th, <sup>234m</sup>Pa, and <sup>210</sup>Pb). <sup>232</sup>Th is also in equilibrium with its daughters (<sup>228</sup>Ra, <sup>212</sup>Pb, <sup>212</sup>Bi and <sup>208</sup>Tl). <sup>235</sup>U/<sup>238</sup>U activity ratio of 0.046 ± 0.007 in the sediment is constant in nature but fluctuates due to geological processes. A value of 0.055 ± 0.008 was found in our sediment sample.
文摘Radium isotopes can be analyzed by different analytical methods based on gamma spectrometric measurements or alpha spectrometry. An improved method was developed to determine radium isotopes from water using gamma spectrometry after radiochemical separation. The Radium was selectively extracted from acidified samples using co-precipitation procedure with iron hydroxide and followed by precipitation of radium as radium sulphate Ba(Ra)SO4. The precipitate Ba(Ra)SO4 was filtered through the Millipore filter paper, dried and weighed to calculate chemical yield. 226Ra and 228Ra activities were measured using low-background gamma spectrometry in water samples. Radium was pre-concentrated from environmental samples by co-precipitation with BaSO4. The amounts of 226Ra and 228Ra on the sample were obtained by gamma-ray spectrometry for the 351 keVγ-ray from 214Pb and for the 911 keV γ-ray from 228Ac, both in radioactive equilibrium with precursors, respectively. The accuracy, selectivity, traceability, applicability and Minimum Detectable Activity (MDA) of the technique were discussed. Also, the effect of physical and chemical characteristics of the water samples such as TDS, pH, soluble species, sulphate and bicarbonate that effect on the radium determination were taking into consideration. The method has been validated with a certified reference material supplied by the International Atomic Energy Agency and reliable results were obtained. The radiochemical yields for radium were 70% - 90% and recovery was 97% and 80% for 226Ra and 228Ra, respectively.
文摘Mexico is one of the largest producers of nopal (Opuntiaficus indica). This "vegetable" is consumed on a daily basis by the Mexican population, being a source of food nutrients. Among its benefits, it is considered the content of potassium, which is essential for human life and health. In this study, it analyzes the content of potassium of the Mexican cactus (Opuntiaficus indica) grown in 5 different regions in the Mexican Basin, where 67% of the nopal is produced for human consumption. The used methodology is gamma spectrometry with Hyperpure Germanium detector (HPGe) and Multichannel Analyzer (MCA) with Maestro~ software. The results show interesting aspects on the concentration of potassium in the nopal. This concentration will primarily depend on: (a) the geological characteristics of the location where the nopal was grows; (b) that potassium concentrations may vary substantially from a region to another, with the same species of nopal as a reference and (c) that this concentration may also vary from one growing season to another.
文摘Amaranthus is a dicotyledonous pseudocereal and one of the new world’s oldest crops,having originated from Meso-America and was a major food crop of the Aztecs.Popularity in the cultivation and consumption of Amaranthus seed in the modern era began in the mid-1970s with the rediscovery and promotion of amaranth due to its superior nutritional attributes as compared to cereal grains.Amaranth plant has a high-quality protein,carbohydrates,unsaturated oil,squalene,dietary fiber,tocopherols,phenolic compounds,flavonoids,vitamins and minerals.The amaranth’s grain was collected at San Martin Pahuacan,Estado de Mexico,Mexico.The used methodology is gamma spectrometry with Hyperpure Germanium detector(HPGe)and Multichannel Analyzer(MCA)with Maestro software.The result shows a unique concentration of radioactive potassium content in the amaranth protein isolated from amaranth grains is 424.1 mg/100 g of amaranth protein.There is an excellent agreement between the amount of potassium determined by atomic absorption spectroscopy in our laboratory and the value obtained in this work using the Gamma Spectrometry Technique.
文摘Gamma-ray spectrometry is a very powerful tool for radioactivity measurements. The gamma-ray spectrometer laboratory in Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Nigeria is accredited to perform measurements of radioactive content of samples collected from the environment, food chain or industrial products with the aid of a high resolution HPGe detector. For accurate gamma-ray spectrometry, certain measurements were considered;the efficiency of the detector was performed experimentally against energies within the range of 59.50 keV (241Am) to 2204.50 keV (226Ra) for the respective geometries of 1 - 6 cm. The sustained solid angle relations with respect to the inverse square of sample geometries from 1 - 6 cm were evaluated. Another main point of this work was focused on the efficiency at geometry of 5 cm with respect to the three selected energies: 661.60 keV (137Cs), 1173.2 keV (60Co) and 1332 keV (60Co) for the main axis, ten degree off main axis, forty five degree off main axis and ninety degree off the detector main axis. In order to verify optimum geometries in our laboratory for both short lived and long lived radionuclides analyses, the evaluation of efficiencies for the respective energies: 1173.2 keV (60Co), 1332.5 keV (60Co), 1764 keV (226Ra) and 2294 keV (226Ra) were plotted against geometries of 1 to 6 cm from the detector end cap along the main axis.
文摘针对核电厂一回路系统管道内壁沉积的腐蚀活化产物,开展γ辐射源项就地测量技术研究。基于高纯锗探测器开发了辐射源项就地测量系统(Sterm-HPGe),利用蒙特卡罗软件进行了无源效率刻度,并开展了实验室效率验证工作。在300~1 408 ke V能量范围内,HPGe探测器在无准直器屏蔽和有准直器屏蔽情况下,点源全能峰效率计算值与测量值的相对偏差分别在±5%和±10%以内。测量系统在我国压水堆核电厂进行了现场应用,能够较准确地测量出管道内60Co、58Co、110mAg等典型沉积核素的源项活度,管道表面剂量率的计算值与测量值的相对偏差一般在±40%以内。