The spatial and temporal variability of the phytoplankton community structure in Daya Bay, South China Sea, were identified by using HPLC-CHEMTAX analytical techniques. The highest chlorophyll a(Chl a) concentrations ...The spatial and temporal variability of the phytoplankton community structure in Daya Bay, South China Sea, were identified by using HPLC-CHEMTAX analytical techniques. The highest chlorophyll a(Chl a) concentrations were observed during summer(with an average value of 0.84 μg/L) and lowest ones during winter(with an average value of 0.33 μg/L). CHEMTAX processing revealed the seasonal succession of phytoplankton species in Daya Bay. During winter, diatoms were the dominant phytoplankton species and contributed 41.5% to total Chl a. Based on Chl a concentration, the average ratio of dinofl agellates to total phytoplankton biomass substantially increased with increasing temperature and nitrogen to phosphorus(N/P) ratio, reaching 52.2% in spring. Nutrient limitation shifted from phosphorus to nitrogen during summer. Moreover, this period was associated with the predominance of diatoms, which accounted for 71.1% of Chl a. Prasinophytes and cryptophytes were the other two dominant groups and particularly dominated during winter. Cyanobacteria became an important group during summer and autumn. Canonical correspondence analysis suggested that chrysophytes, dinofl agellates, and cryptophytes were strongly associated with high nitrate concentration, ammonium, dissolved inorganic nitrogen(DIN), and N/P ratio, and were negatively associated with temperature and phosphate. Diatoms and cyanobacteria were strongly associated with temperature, phosphate, and salinity, and are negatively influenced by nitrate, ammonium, DIN, and N/P ratio. Microscopic observations and pigment HPLC information were in good agreement for diatoms and dinofl agellates in the bay. This study demonstrated the usefulness of pigment analysis in investigating the distribution of phytoplankton groups in a complex physical environment, such as Daya Bay.展开更多
Marine phytoplankton plays a very important role in marine ecology,environment and global climate change,and it is an indicative organism for measuring water quality.The Bohai Sea and the Yellow Sea in China have uniq...Marine phytoplankton plays a very important role in marine ecology,environment and global climate change,and it is an indicative organism for measuring water quality.The Bohai Sea and the Yellow Sea in China have unique geographical locations.Therefore,the characteristics of phytoplankton population distribution in the Bohai Sea and the Yellow Sea are of great significance to the study of marine ecology in China.In this work,the pigment data obtained from the Yellow Sea and Bohai Sea in August 2015 were analyzed by HPLC(High-Performance Liquid Chromatography).Then the pigment data were analyzed statistically by the CHEMTAX software,so that the phytoplankton community structure information was obtained.Results show that in summer 2015,from the perspective of sea area,the biomass of phytoplankton in the surface of Bohai Sea is higher than that in the Yellow Sea,while the phytoplankton biomass in the surface of North Yellow Sea is higher than that in the South.From the perspective of dominant species of phytoplankton,the surface waters of the Yellow Sea and Bohai Sea were dominated by diatoms,prymnesiophytes and chlorophytes,accounting for 55.76%,14.56%and 14.55%respectively.Among them,diatoms accounted for the absolute advantage.展开更多
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwellin...Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.展开更多
基金Supported by the National Natural Science Foundation of China(No.41676103)the Special Scientific Research Funds for Central NonProfit Institutes,the Yellow Sea Fisheries Research Institutes(No.20603022015002)the National Marine Public Welfare Research Project of China(No.201305010)
文摘The spatial and temporal variability of the phytoplankton community structure in Daya Bay, South China Sea, were identified by using HPLC-CHEMTAX analytical techniques. The highest chlorophyll a(Chl a) concentrations were observed during summer(with an average value of 0.84 μg/L) and lowest ones during winter(with an average value of 0.33 μg/L). CHEMTAX processing revealed the seasonal succession of phytoplankton species in Daya Bay. During winter, diatoms were the dominant phytoplankton species and contributed 41.5% to total Chl a. Based on Chl a concentration, the average ratio of dinofl agellates to total phytoplankton biomass substantially increased with increasing temperature and nitrogen to phosphorus(N/P) ratio, reaching 52.2% in spring. Nutrient limitation shifted from phosphorus to nitrogen during summer. Moreover, this period was associated with the predominance of diatoms, which accounted for 71.1% of Chl a. Prasinophytes and cryptophytes were the other two dominant groups and particularly dominated during winter. Cyanobacteria became an important group during summer and autumn. Canonical correspondence analysis suggested that chrysophytes, dinofl agellates, and cryptophytes were strongly associated with high nitrate concentration, ammonium, dissolved inorganic nitrogen(DIN), and N/P ratio, and were negatively associated with temperature and phosphate. Diatoms and cyanobacteria were strongly associated with temperature, phosphate, and salinity, and are negatively influenced by nitrate, ammonium, DIN, and N/P ratio. Microscopic observations and pigment HPLC information were in good agreement for diatoms and dinofl agellates in the bay. This study demonstrated the usefulness of pigment analysis in investigating the distribution of phytoplankton groups in a complex physical environment, such as Daya Bay.
基金supported by Liao Ning Revitalization Talents Program No. XLYC1807161Dalian High-level Talents Innovation Support Plan No. 2017RQ063+4 种基金Dalian Ocean University “Zhanlan scholar”ProgramThe National Natural Science Foundation of China under contract Nos. 41206013 and 41430963the Public Science and Technology Research Funds Projects of Ocean under contract No. 201205018the National Science and Technology Support Program under contract No. 2014BAB12B02Projects of Institute of Marine Industry Technology of Liaoning Universities
文摘Marine phytoplankton plays a very important role in marine ecology,environment and global climate change,and it is an indicative organism for measuring water quality.The Bohai Sea and the Yellow Sea in China have unique geographical locations.Therefore,the characteristics of phytoplankton population distribution in the Bohai Sea and the Yellow Sea are of great significance to the study of marine ecology in China.In this work,the pigment data obtained from the Yellow Sea and Bohai Sea in August 2015 were analyzed by HPLC(High-Performance Liquid Chromatography).Then the pigment data were analyzed statistically by the CHEMTAX software,so that the phytoplankton community structure information was obtained.Results show that in summer 2015,from the perspective of sea area,the biomass of phytoplankton in the surface of Bohai Sea is higher than that in the Yellow Sea,while the phytoplankton biomass in the surface of North Yellow Sea is higher than that in the South.From the perspective of dominant species of phytoplankton,the surface waters of the Yellow Sea and Bohai Sea were dominated by diatoms,prymnesiophytes and chlorophytes,accounting for 55.76%,14.56%and 14.55%respectively.Among them,diatoms accounted for the absolute advantage.
基金The Global Change and Air-Sea Interaction Program under contract Nos GASI-02-IND-ST-Sspr and GASI-03-01-03-03the National Natural Science Foundation of China under contract No.41506185the Special Funds for Basic Ocean Science Research of the First Institute of Oceanography,State Oceanic Administration of China under contract Nos 2013T04 and 2012T08
文摘Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.