To prepare a solid dispersion of cisapride with hydroxypropylmethyl cellulose(HPMC E5 LV) as carrier for the purpose of accelerating the in vitro drug release by means ofimproving the solubility of the model drug. Met...To prepare a solid dispersion of cisapride with hydroxypropylmethyl cellulose(HPMC E5 LV) as carrier for the purpose of accelerating the in vitro drug release by means ofimproving the solubility of the model drug. Methods Alcohol and simulated gastric fluid (SGF) wereused to dissolve cisapride and HPMC in order to make the model drug dispersed homogeneously in thecarrier. The HPMC-cisapride solid dispersion was then obtained by conventional solvent evaporationmethod. Powder X-ray diffraction (XRD) was used to measure the diffraction peaks of pure carrier,pure cisapride, physical mixture of HPMC with cisapride (4:1), and HPMC-cisapride solid dispersion(4:1) to confirm the crystal existence. The solubility of pure drug and HPMC-cisapride soliddispersion was measured with water, SGF and simulated intestinal fluid (SIF) . The in vitro drugreleases of the sustained release tablet prepared with pure cisapride or HPMC-cisapride soliddispersion were investigated with water and SGF as media, respectively. Results No diffraction peakswere found by X-ray diffraction in the HPMC-cisapride solid dispersion (4:1), indicating that thedrug existed in an amorphous form at that drug-carrier ratio. Compared with the pure drug, thesolubilities of HPMC-cisapride solid dispersion are increased by 239.4% in SGF, 132.6% in water, and117.9% in SIF. According to the in vitro drug release, the sustained release tablet prepared withHPMC-cisapride solid dispersion had a faster drug release than did that prepared with pure drug. Thein vitro drug release profiles were found to comply with Higuchi's rule. Conclusion The in vitrodrug release of the sustained release tablet made by HPMC-cisapride solid dispersion is improvedowing to the increased drug solubility.展开更多
Solid dispersion(SD)systems have been extensively used to increase the dissolution and bioavailability of poorly water-soluble drugs.To circumvent the limitations of polyvinylpyrrolidone(PVP)dispersions,HPMC E5 was ap...Solid dispersion(SD)systems have been extensively used to increase the dissolution and bioavailability of poorly water-soluble drugs.To circumvent the limitations of polyvinylpyrrolidone(PVP)dispersions,HPMC E5 was applied in the formulation process and scaling-up techniques,simultaneously.In this study,SD of nimodipine(NMP)and corresponding tablets were prepared through solvent method and fluid bed granulating one step technique,respectively.Discriminatory dissolution media were used to obtain reliable dissolution results.Meanwhile,the stability study of SDs was investigated with storage under high temperature and humidity conditions.Moreover,the solubility of SDs was measured to explore the effect of carriers.The preparations were characterized by DSC,PXRD,and FTIR.Dramatical improvements in the dissolution rate of NMP were achieved by the ingenious combination of the two polymers.Binary NMP/PVP/HPMC-SDs released steadily,while the dissolution of single NMP/PVP-SDs decreased rapidly in water.The fluid-bed tablets(FB-T)possessed a similar dissolution behavior to the commercial Nimotop TM tablets.The characterization patterns implied that NMP existed in an amorphous state in our SDs.Furthermore,the results of stability tests suggested a better stability of the binary SDs.A special cooperative effect of PVP and HPMC was discovered on dissolution characteristics of NMP SDs and tablets,which could be extended to other drugs henceforth.Finally,the bioavailability of FB-T was evaluated in beagle dogs with Nimotop TM as the reference,and the results showed a higher AUC 0–12h value for FB-T.展开更多
Cement mortar with carbon fiber(CFc)and resin-cement mortar with carbon fiber(CFrc)were used as inner and outer cores of smart aggregate with Z shape,respectively,which was used as the basic perception units to prepar...Cement mortar with carbon fiber(CFc)and resin-cement mortar with carbon fiber(CFrc)were used as inner and outer cores of smart aggregate with Z shape,respectively,which was used as the basic perception units to prepare smart concrete aggregate with a mosaic structure(SAMS).The hydroxpropyl methylcellulose(HPMC)was taken into consideration to improve the properties of mortar;by using HPMC,the structure of SAMS was optimized and its mechanical and electrical properties were evaluated.The experimental results show that the toughness of mortar could be improved by the complex that formed by epoxy resin,and the effect of HPMC on the flexibility of CFc was greater than that on the flexibility of CFrc;the feasible designing indicates that the CFc-Z core and CFrc-Z core could be used as inner and outer cores of SAMS.When the proposed dosages of HPMC in inner and outer cores are 0.35wt%and 0.2wt%,respectively,it could give an effective prediction for the damage of concrete during the loading process.展开更多
The anionic surfactant sodium dodecylsulfate(SDS) has improved the physical stability of flurbiprofen(FBP) suspension, which was suspended by 0.2%(w/v) hydroxypropylmethyl cellulose(HPMC, K4 M). Therefore, the physica...The anionic surfactant sodium dodecylsulfate(SDS) has improved the physical stability of flurbiprofen(FBP) suspension, which was suspended by 0.2%(w/v) hydroxypropylmethyl cellulose(HPMC, K4 M). Therefore, the physical stability of FBP suspensions and the interaction of HPMC/SDS were studied, and a certain association between them was revealed. The antisolvent precipitation method was used to prepare suspensions. The apparent drug concentration from different sites was evaluated to get the dispersion of drug actually. The process of flocculation and deflocculation with the addition of SDS was caught by analyzing the morphology of the suspended particles. The physical stability of the FBP suspensions was characterized mainly by measuring the re-dispersion time, the zeta potential and particle size. Meanwhile, conductivity measurements were carried out to obtain the characteristic concentrations of SDS in HPMC/SDS system. The viscosities, the abilities for improving the solubility and wettability of FBP in the separate and mixed HPMC/SDS solutions were also contrasted respectively. The suspensions prepared with HPMC/SDS possessed better physical stability. The suspensions were uniform when the concentration of SDS was between the critical adsorption concentration(CAC) and the polymer saturation point(PSP). After PSP, the uniformity became worse and worse until the SDS was enough to form a deflocculation state. Besides, the re-dispersion time of FBP suspensions was longest when the concentration of SDS around CAC and shorter by shorter after the critical micelle concentration(CMC). The article provided a new sight on the relation between the interaction of excipient matrix and pharmaceutical preparations.展开更多
Abstract: Commercially available domperidone -a D2 receptor antagonist- is an immediate release formulation which has never been formulated into microspheres for sustained release. The present work aims towards study...Abstract: Commercially available domperidone -a D2 receptor antagonist- is an immediate release formulation which has never been formulated into microspheres for sustained release. The present work aims towards studying the effect of combination of a natural chitosan from an oyster shell of Mystilis edulis and HPMC (hydroxy propyl methyl cellulose) (spectracel 15 E) as polymer and tripolyphosphate as cross linking agent using wet gelation technique. The various polymer combination ratios for different batches were compared with a low molecular weight standard chitosan. The extracted chitosan - HPMC polymer combination ratios were chosen at ten levels: as batches B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 for 1:1, 1:2, 2:1, 1:0, 0:1, 3:1, 1:3, 5:1, and 1:5 and 1:1 having 450:450, 300:600, 600:300, 900:0, 0:900, 675:225, 225:675, 750:150, 150:750, 450:450 mg respectively, while the quantity of domperidone and tripolyphosphate remained constant. B 11 and B 12 were formulated with standard chitosan and HPMC. The percentage yield of the formulated microspheres was determined and then evaluated for flowability, drug entrapment efficiency, drug release and mechanism of drug release by Fickian diffusion. The best batches of the domperidone loaded microspheres produced from the combination polymer were compared with the standard chitosan. The highest yields of microspheres were given by batches B12, B11, B10, and B4 with values of 50.1 ± 0.1%, 49.6 ± 0.1%, 46.6 :± 0.1%, and 46.1 ± 0.0% respectively while the lowest yield were 23.3 ± 0.2% and 23.6 ± 0.2%. B5 and B6 and B9 did not yield any microsphere. The bulk density, tapped density, compressibility and Hausner's ratio of the microspheres showed good flowability and high percent compressibility. The drug entrapment efficiency showed that the entrapment ranged from 54.2 to 97.2, where the least entrapment was B4 (54.2 ± 0.1) and the highest B12 (97.2 ± 0.2). The polymer surface of the microspheres as observed by SEM (scanning electron microscopy) was heterogeneous and porous which offers enhanced bioadhesivity. The dissolution study was used to determine the percentage drug release which ranged from 12.1% to 68.9% after 5 hours. Batches 1, 2, 3, 4, 7, and I 1 follow zero order kinetics via Fickian diffusion. The results indicate that microspberes of domperidone could be successfully formulated with a natural chitosan either alone or in combination with HPMC for sustained delivery of domperidone. Furthermore, the concentration of the natural polymer and HPMC employed in the formulation need to be carefully selected to enable the production of microspheres with the desired sustained release properties.展开更多
文摘To prepare a solid dispersion of cisapride with hydroxypropylmethyl cellulose(HPMC E5 LV) as carrier for the purpose of accelerating the in vitro drug release by means ofimproving the solubility of the model drug. Methods Alcohol and simulated gastric fluid (SGF) wereused to dissolve cisapride and HPMC in order to make the model drug dispersed homogeneously in thecarrier. The HPMC-cisapride solid dispersion was then obtained by conventional solvent evaporationmethod. Powder X-ray diffraction (XRD) was used to measure the diffraction peaks of pure carrier,pure cisapride, physical mixture of HPMC with cisapride (4:1), and HPMC-cisapride solid dispersion(4:1) to confirm the crystal existence. The solubility of pure drug and HPMC-cisapride soliddispersion was measured with water, SGF and simulated intestinal fluid (SIF) . The in vitro drugreleases of the sustained release tablet prepared with pure cisapride or HPMC-cisapride soliddispersion were investigated with water and SGF as media, respectively. Results No diffraction peakswere found by X-ray diffraction in the HPMC-cisapride solid dispersion (4:1), indicating that thedrug existed in an amorphous form at that drug-carrier ratio. Compared with the pure drug, thesolubilities of HPMC-cisapride solid dispersion are increased by 239.4% in SGF, 132.6% in water, and117.9% in SIF. According to the in vitro drug release, the sustained release tablet prepared withHPMC-cisapride solid dispersion had a faster drug release than did that prepared with pure drug. Thein vitro drug release profiles were found to comply with Higuchi's rule. Conclusion The in vitrodrug release of the sustained release tablet made by HPMC-cisapride solid dispersion is improvedowing to the increased drug solubility.
文摘Solid dispersion(SD)systems have been extensively used to increase the dissolution and bioavailability of poorly water-soluble drugs.To circumvent the limitations of polyvinylpyrrolidone(PVP)dispersions,HPMC E5 was applied in the formulation process and scaling-up techniques,simultaneously.In this study,SD of nimodipine(NMP)and corresponding tablets were prepared through solvent method and fluid bed granulating one step technique,respectively.Discriminatory dissolution media were used to obtain reliable dissolution results.Meanwhile,the stability study of SDs was investigated with storage under high temperature and humidity conditions.Moreover,the solubility of SDs was measured to explore the effect of carriers.The preparations were characterized by DSC,PXRD,and FTIR.Dramatical improvements in the dissolution rate of NMP were achieved by the ingenious combination of the two polymers.Binary NMP/PVP/HPMC-SDs released steadily,while the dissolution of single NMP/PVP-SDs decreased rapidly in water.The fluid-bed tablets(FB-T)possessed a similar dissolution behavior to the commercial Nimotop TM tablets.The characterization patterns implied that NMP existed in an amorphous state in our SDs.Furthermore,the results of stability tests suggested a better stability of the binary SDs.A special cooperative effect of PVP and HPMC was discovered on dissolution characteristics of NMP SDs and tablets,which could be extended to other drugs henceforth.Finally,the bioavailability of FB-T was evaluated in beagle dogs with Nimotop TM as the reference,and the results showed a higher AUC 0–12h value for FB-T.
基金Funded by the Natural Science Foundation of Fujian Province(No.2016J01241)the National Natural Science Foundation of China(No.51608212)。
文摘Cement mortar with carbon fiber(CFc)and resin-cement mortar with carbon fiber(CFrc)were used as inner and outer cores of smart aggregate with Z shape,respectively,which was used as the basic perception units to prepare smart concrete aggregate with a mosaic structure(SAMS).The hydroxpropyl methylcellulose(HPMC)was taken into consideration to improve the properties of mortar;by using HPMC,the structure of SAMS was optimized and its mechanical and electrical properties were evaluated.The experimental results show that the toughness of mortar could be improved by the complex that formed by epoxy resin,and the effect of HPMC on the flexibility of CFc was greater than that on the flexibility of CFrc;the feasible designing indicates that the CFc-Z core and CFrc-Z core could be used as inner and outer cores of SAMS.When the proposed dosages of HPMC in inner and outer cores are 0.35wt%and 0.2wt%,respectively,it could give an effective prediction for the damage of concrete during the loading process.
基金financially supported by National Natural Science Foundation of China(No.81473161 and No.81273445)
文摘The anionic surfactant sodium dodecylsulfate(SDS) has improved the physical stability of flurbiprofen(FBP) suspension, which was suspended by 0.2%(w/v) hydroxypropylmethyl cellulose(HPMC, K4 M). Therefore, the physical stability of FBP suspensions and the interaction of HPMC/SDS were studied, and a certain association between them was revealed. The antisolvent precipitation method was used to prepare suspensions. The apparent drug concentration from different sites was evaluated to get the dispersion of drug actually. The process of flocculation and deflocculation with the addition of SDS was caught by analyzing the morphology of the suspended particles. The physical stability of the FBP suspensions was characterized mainly by measuring the re-dispersion time, the zeta potential and particle size. Meanwhile, conductivity measurements were carried out to obtain the characteristic concentrations of SDS in HPMC/SDS system. The viscosities, the abilities for improving the solubility and wettability of FBP in the separate and mixed HPMC/SDS solutions were also contrasted respectively. The suspensions prepared with HPMC/SDS possessed better physical stability. The suspensions were uniform when the concentration of SDS was between the critical adsorption concentration(CAC) and the polymer saturation point(PSP). After PSP, the uniformity became worse and worse until the SDS was enough to form a deflocculation state. Besides, the re-dispersion time of FBP suspensions was longest when the concentration of SDS around CAC and shorter by shorter after the critical micelle concentration(CMC). The article provided a new sight on the relation between the interaction of excipient matrix and pharmaceutical preparations.
文摘Abstract: Commercially available domperidone -a D2 receptor antagonist- is an immediate release formulation which has never been formulated into microspheres for sustained release. The present work aims towards studying the effect of combination of a natural chitosan from an oyster shell of Mystilis edulis and HPMC (hydroxy propyl methyl cellulose) (spectracel 15 E) as polymer and tripolyphosphate as cross linking agent using wet gelation technique. The various polymer combination ratios for different batches were compared with a low molecular weight standard chitosan. The extracted chitosan - HPMC polymer combination ratios were chosen at ten levels: as batches B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 for 1:1, 1:2, 2:1, 1:0, 0:1, 3:1, 1:3, 5:1, and 1:5 and 1:1 having 450:450, 300:600, 600:300, 900:0, 0:900, 675:225, 225:675, 750:150, 150:750, 450:450 mg respectively, while the quantity of domperidone and tripolyphosphate remained constant. B 11 and B 12 were formulated with standard chitosan and HPMC. The percentage yield of the formulated microspheres was determined and then evaluated for flowability, drug entrapment efficiency, drug release and mechanism of drug release by Fickian diffusion. The best batches of the domperidone loaded microspheres produced from the combination polymer were compared with the standard chitosan. The highest yields of microspheres were given by batches B12, B11, B10, and B4 with values of 50.1 ± 0.1%, 49.6 ± 0.1%, 46.6 :± 0.1%, and 46.1 ± 0.0% respectively while the lowest yield were 23.3 ± 0.2% and 23.6 ± 0.2%. B5 and B6 and B9 did not yield any microsphere. The bulk density, tapped density, compressibility and Hausner's ratio of the microspheres showed good flowability and high percent compressibility. The drug entrapment efficiency showed that the entrapment ranged from 54.2 to 97.2, where the least entrapment was B4 (54.2 ± 0.1) and the highest B12 (97.2 ± 0.2). The polymer surface of the microspheres as observed by SEM (scanning electron microscopy) was heterogeneous and porous which offers enhanced bioadhesivity. The dissolution study was used to determine the percentage drug release which ranged from 12.1% to 68.9% after 5 hours. Batches 1, 2, 3, 4, 7, and I 1 follow zero order kinetics via Fickian diffusion. The results indicate that microspberes of domperidone could be successfully formulated with a natural chitosan either alone or in combination with HPMC for sustained delivery of domperidone. Furthermore, the concentration of the natural polymer and HPMC employed in the formulation need to be carefully selected to enable the production of microspheres with the desired sustained release properties.